Skip to main content
Log in

Novel composites of \(\upbeta \)-SiAlON and radome manufacturing technology developed at ARCI, Hyderabad, for hypervelocity vehicles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Keeping the importance of developing suitable radome (a word derived from radar \(+\) dome) materials and near-net shape consolidation technique for manufacturing radomes suitable for hypersonic (>mach 5) radar-guided missiles in India, the International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, has initiated an in-house R&D programme and successfully developed a complete process know-how for manufacturing defect-free prototype \(\upbeta \)-SiAlON-based radome structures with all the desired properties. As a part of this R&D programme, total six separate sub-projects mentioned below were undertaken and executed: (i) identification of the best composition out of \(\upbeta \)-\(\hbox {Si}_{6-z}\hbox {Al}_{z}\hbox {O}_{z}\hbox {N}_{8-z}\) (0 \(\le z \le \) 4.1) solid solution, which possesses a right combination of properties required for radome applications, (ii) designing of an AlN-free precursor mixture for consolidating \(\upbeta \)-\(\hbox {Si}_{4}\hbox {Al}_{2}\hbox {O}_{2}\hbox {N}_{6}\) ceramics by following aqueous colloidal processing routes, (iii) development of a process for passivating water-sensitive AlN powder against hydrolysis, (iv) development of aqueous gelcasting (GC) and hydrolysis-assisted solidification (HAS) powder processing routes for consolidating dense \(\upbeta \)-SiAlON ceramics using highly solids loaded (>50 vol%) aqueous slurries, (v) development of an hydrolysis-induced aqueous gelcasting (GCHAS) process, a novel near-net-shape consolidation technique, to produce radomes with very high-production yields and (vi) development of an economic route for synthesizing the low-dielectric constant and high strength novel \(\upbeta \)-SiAlON-\(\hbox {SiO}_{2}\) ceramic composites. In this paper, (i) the basis for choosing \(\upbeta \)-SiAlON-based ceramics for hypervelocity radome applications, and (ii) the various bottle-neck problems faced, while executing this entire R&D work and the way they were overcome have been critically analysed and discussed systematically, while citing all the relevant and important references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Janney M A, Walls C A, Kupp D M and Kirby K W 2004 Am. Ceram. Soc. Bull. 83 9201

    Google Scholar 

  2. Kirby K W, Jankiewicz A, Kupp D, Walls C and Janney M 2001 Mater. Technol. 16 187

    Article  Google Scholar 

  3. Kirby K W, Jankiewicz A T, Lowell R F and Hallse R L 2000 In: Near net shape fabrication of ceramic radomes (USA: Raytheon Company) 8 pp

  4. Janney M A, Omatete O O, Walls C A, Nunn S D, Ogle R J and Westmoreland G 1998 J. Am. Ceram. Soc. 81 581

    Article  Google Scholar 

  5. Janney M A, Kupp D M, Kirby K W and Walls C A 2003 Ceram. Trans. 142 253

    Google Scholar 

  6. Janney M A, Ren W, Kirby G H, Nunn S D and Viswanathan S 1998 Mater. Manuf. Process. 13 389

    Article  Google Scholar 

  7. Omatete O O, Janney M A and Nunn S D 1997 J. Eur. Ceram. Soc. 17 407

    Article  Google Scholar 

  8. Omatete O, Janney M A and Strehlow R A 1991 Am. Ceram. Soc. Bull. 70 1641

    Google Scholar 

  9. Young A C, Omatete O O, Janney M A and Menchhofer P A 1991 J. Am. Ceram. Soc. 74 612

    Article  Google Scholar 

  10. Ganesh I, Sundararajan G, Olhero S M, Torres P M C and Ferreira J M F 2010 Ceram. Int. 36 1357

    Article  Google Scholar 

  11. Ganesh I, Reddy G J, Sundararajan G, Olhero S M, Torres P M C and Ferreira J M F 2011 Int. J. Appl. Ceram. Technol. 8 873

    Article  Google Scholar 

  12. Ganesh I 2011 Ceram. Int. 37 2237

    Article  Google Scholar 

  13. Ganesh I 2011 Adv. Appl. Ceram. 110 496

    Article  Google Scholar 

  14. Ganesh I, Olhero S M, Torres P M C and Ferreiraw J M F 2009 J. Am. Ceram. Soc92 350

    Article  Google Scholar 

  15. Ganesh I, Olhero S M, Araujo A B, Correia M R, Sundararajan G and Ferreira J M F 2008 Langmuir 24 5359

    Article  Google Scholar 

  16. Ganesh I, Sundararajan G, Olhero S M and Ferreira J M F 2011 Ceram. Int. 37 835

    Article  Google Scholar 

  17. Olhero S M, Ganesh I, Torres P M C, Alves F J and Ferreira J M F 2009 J. Am. Ceram. Soc. 92 9

    Article  Google Scholar 

  18. Ganesh I, Olhero S M, Torres P M C, Alves F J and Ferreira J M F 2009 J. Eur. Ceram. Soc. 29 1393

    Article  Google Scholar 

  19. Ganesh I 2009 Int. J. Appl. Ceram. Technol. 6 89

    Article  Google Scholar 

  20. Ganesh I 2011 Bull. Mater. Sci. 34 327

    Article  Google Scholar 

  21. Ganesh I and Sundararajan G 2010 J. Am. Ceram. Soc. 93 3180

    Article  Google Scholar 

  22. Ganesh I, Reddy G J, Sundararajan G, Olhero S M, Torres P M C and Ferreira J M F 2010 Ceram. Int. 36 473

    Article  Google Scholar 

  23. Kosmac T, Novak S and Sajko M 1997 J. Eur. Ceram. Soc. 17 427

    Article  Google Scholar 

  24. Novak S, Kosmac T, Krnel K and Drazic G 2001 J. Eur. Ceram. Soc. 22 289

    Article  Google Scholar 

  25. Gilde G, Patel P, Hubbard C, Pothier B, Hynes T, Croft W et al 1997 US Patent, 5 p

  26. Harris J N and Welsh E A 1973 Fused silica design manual I. In: Georgia Inst. Technol. 151 p

  27. Kandi K K, Thallapalli N and Chilakalapalli S P R 2015 Int. J. Appl. Ceram. Technol. 12 909

    Article  Google Scholar 

  28. Richardson K K, Freitag D W and Hunn D L 1995 J. Am. Ceram. Soc. 78 2662

    Article  Google Scholar 

  29. Gutierrez-Mora F, Goretta K C, Singh D, Routbort J L, Sambasivan S, Steiner K A et al 2006 J. Eur. Ceram. Soc. 26 1179

    Article  Google Scholar 

  30. Wang Y and Liu J 2009 Int. J. Appl. Ceram. Technol. 6 190

    Article  Google Scholar 

  31. Wu J-H, Guo J-K and Li B 2000 J. Mater. Sci. 35 4895

    Article  Google Scholar 

  32. Wen G, Wu G L, Lei T Q, Zhou Y and Guo Z X 2000 J. Eur. Ceram. Soc. 20 1923

    Article  Google Scholar 

  33. Hsieh M Y 1987 Silicon nitride having low dielectric loss. In: GTE Products Corp., USA. 4 pp Cont.-in-part of U.S. Ser. No. 721,118

  34. Izhevskiy V A, Genova L A, Bressiani J C and Aldinger F 2000 J. Eur. Ceram. Soc. 20 2275

    Article  Google Scholar 

  35. Hampshire S, Park H K, Thompson D P and Jack K H 1978 Nature (London) 274 880

    Article  Google Scholar 

  36. Jack K H 1976 J. Mater. Sci. 11 1135

    Article  Google Scholar 

  37. Oyama Y and Kamigaito O 1971 Jpn. J. Appl. Phys. 10 1637

    Article  Google Scholar 

  38. Ganesh I, Thiyagarajan N, Jana D C, Mahajan Y R and Sundararajan G 2008 J. Am. Ceram. Soc. 91 115

    Article  Google Scholar 

  39. Jack K H 1978 Mater. Res. Bull. 13 1327

    Article  Google Scholar 

  40. Shimizu Y, Hatano J, Hyodo T and Egashira M 2000 J. Am. Ceram. Soc. 83 2793

    Article  Google Scholar 

  41. Uno N, Enoki K and Miyakoshi M 1987 In: Surface treatment of aluminum nitride powder for improvement of water-repellency and -dispersibility (Japan: Furukawa Electric Co., Ltd.) 6 pp

  42. Ganesh I, Olhero S M and Ferreira J M F 2009 Adv. Appl. Ceram. 108 111

    Article  Google Scholar 

  43. Ganesh I, Thiyagarajan N, Sundararajan G, Olhero S M and Ferreira J M F 2008 J. Eur. Ceram. Soc. 28 2281

    Article  Google Scholar 

  44. Krnel K and Kosmac T 2006 Int. J. Mater. Res. 97 645

    Google Scholar 

  45. Olhero S M, Novak S, Oliveira M, Krnel K, Kosmac T and Ferreira J M F 2004 J. Mater. Res. 19 746

    Article  Google Scholar 

  46. Krnel K and Kosmac T 2001 J. Eur. Ceram. Soc. 21 2075

    Article  Google Scholar 

  47. Ganesh I, Thiyagarajan N, Jana D C, Barik P and Sundararajan G 2008 J. Am. Ceram. Soc. 91 1566

    Article  Google Scholar 

  48. Ganesh I, Thiyagarajan N, Jana D C, Mahajan Y R and Sundararajan G 2008 J. Am. Ceram. Soc. 91 3121

    Article  Google Scholar 

  49. Sheppard L M 1990 Am. Ceram. Soc. Bull. 69 11

    Google Scholar 

  50. Groat E A and Mroz T J 1994 Am. Ceram. Soc. Bull. 73 75

    Google Scholar 

  51. Krnel K and Kosmac T 2000 J. Am. Ceram. Soc. 83 1375

    Article  Google Scholar 

  52. Koh Y-H, Choi J-J and Kirn H-E 2000 J. Am. Ceram. Soc. 83 306

    Article  Google Scholar 

  53. Shan H B, Zhu Y and Zhang Z T 1999 Br. Ceram. Trans. 98 146

    Article  Google Scholar 

  54. Binner J and Zhang Y 2005 Ceram. Int. 31 469

    Article  Google Scholar 

  55. Fukumoto S, Hookabe T and Tsubakino H 2000 J. Mater. Sci. 35 2743

    Article  Google Scholar 

  56. Oliveira M, Olhero S, Rocha J and Ferreira J M F 2003 J. Colloid Interf. Sci. 261 456

    Article  Google Scholar 

  57. Morisada Y, Sakurai T and Miyamoto Y 2004 Int. J. Appl. Ceram. Technol. 1 374

    Article  Google Scholar 

  58. Ganesh I, Thiyagarajan N, Jana D C, Barick P, Sundararajan G and Ferreira J M F 2008 J. Eur. Ceram. Soc. 28 879

    Article  Google Scholar 

  59. Ganesh I 2012 Mater. Manuf. Process. 27 233

    Article  Google Scholar 

  60. Ganesh I, Thiyagarajan N, Jana D C, Sundararajan G, Olhero S M and Ferreira J M F 2008 J. Mater. Res. 23 2305

    Article  Google Scholar 

  61. Ganesh I and Sundararajan G 2011 Adv. Appl. Ceram. 110 87

    Article  Google Scholar 

  62. Ganesh I 2011 Process. Appl. Ceram. 5 113

    Article  Google Scholar 

Download references

Acknowledgements

Author wishes to express his gratitude to all his colleagues at ARCI, Hyderabad, for their kind contributions to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibram Ganesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh, I. Novel composites of \(\upbeta \)-SiAlON and radome manufacturing technology developed at ARCI, Hyderabad, for hypervelocity vehicles. Bull Mater Sci 40, 719–735 (2017). https://doi.org/10.1007/s12034-017-1424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1424-y

Keywords

Navigation