Skip to main content

Advertisement

Log in

Study of gamma radiation shielding properties of \(\mathbf{ZnO {-}{} \mathbf TeO }_\mathbf{2}\) glasses

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Mass attenuation coefficient \((\mu _\mathrm{m})\), half value layer (HVL) and mean free path (MFP) for \(x\hbox {ZnO}{-}\)(100\({-}x)\hbox {TeO}_{2}\), where \(x = 10\), 15, 20, 25, 30, 35 and 40 mol%, have been measured for 0.662, 1.173 and 1.33 MeV photons emitted from \(^{137}\hbox {Cs}\) and \(^{60}\hbox {Co}\) using a \(3\times 3\) inch NaI(Tl) detector. Some relevant parameters such as effective atomic numbers (\(Z_\text {eff})\) and electron densities (\(N_\text {el})\) of glass samples have been also calculated in the photon energy range of 0.015–15 MeV. Moreover, gamma-ray energy absorption buildup factor (EABF) and exposure buildup factor (EBF) were estimated using a five-parameter Geometric Progression (GP) fitting approximation, for penetration depths up to 40 MFP and in the energy range 0.015–15 MeV. The measured mass attenuation coefficients were found to agree satisfactorily with the theoretical values obtained through WinXcom. Effective atomic numbers (\(Z_\text {eff})\) and electron densities (\(N_\text {el})\) were found to be the highest for 40\(\hbox {ZnO}{-}\)60\(\hbox {TeO}_{2}\) glass in the energy range 0.04–0.2 MeV. The \(10\hbox {ZnO}{-}90\hbox {TeO}_{2}\) glass sample has lower values of gamma-ray EBFs in the intermediate energy region. The reported new data on radiation shielding characteristics of zinc tellurite glasses should be beneficial from the point of proper gamma shield designs when intended to be used as radiation shields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kulwinder K, Singh J and Vikas A 2015 Nucl. Eng. Des.  285 31

    Article  Google Scholar 

  2. Aly S, Elshazly M, Elbashar H, AbouEl-azm M, El-Okr M, Comsan H et al 2014 Radiat. Phys. Chem.  102 167

    Article  Google Scholar 

  3. Singh J, Sandeep K and Kaundal S 2014 Radiat. Phys. Chem. 96 153

    Article  Google Scholar 

  4. Vishwanath S, Badiger N, Chanthima N and Kaewkhao J 2014 Radiat. Phys. Chem. 98 14

    Article  Google Scholar 

  5. Wang J S, Vogel E M and Snitzer E 1994 Opt. Mater. 3 187

    Article  Google Scholar 

  6. Ulrich D R 1964 J. Am. Ceram. Soc. 47 595

    Article  Google Scholar 

  7. Burger H, Kneipp K, Hobert H, Vogel W, Kozhukharov V and Neov S 1992 J. Non-Cryst. Solids 151 134

    Article  Google Scholar 

  8. Senthil Murugan G, Suzuki T, Ohishi Y, Takahashi Y, Benino Y, Fujiwara T et al 2004 Appl. Phys. Lett. 85 3405

    Article  Google Scholar 

  9. Manikandan N, Ryasnyanskiy A and Toulouse J 2012 J. Non-Cryst. Solids 358 947

    Article  Google Scholar 

  10. Sekiya T, Mochida N and Ohtsuka A 1994 J. Non-Cryst. Solids 168 106

    Article  Google Scholar 

  11. Sekiya T, Mochida N and Ohtsuka A 1992 J. Non-Cryst. Solids 144 128

    Article  Google Scholar 

  12. Sharaf J M and Saleh H 2015 Radiat. Phys. Chem. 110 87

    Article  Google Scholar 

  13. Salehi D, Sardari D and Jozani M S 2015 Adv. Mater. Res. 4 23

    Article  Google Scholar 

  14. Harima Y, Sakamoto Y, Tonaka S and Kawai M 1986 Nucl. Sci. Eng. 94 24

    Article  Google Scholar 

  15. Suteau C and Chiron M 2005 Radiat. Prot. Dosim. 116 489

    Article  Google Scholar 

  16. Shimizu A 2002 J. Nucl. Sci. Technol. 39 477

    Article  Google Scholar 

  17. Shimizu A, Onda T and Sakamoto Y 2004 J. Nucl. Sci. Technol. 41 413

    Article  Google Scholar 

  18. Sandari D, Abbaspour A, Baradaran S and Babapour F 2009 Appl. Radiat. Isot. 67 1438

    Article  Google Scholar 

  19. ANSI/ANS-6.4.3 1991 Gamma ray attenuation coefficient and buildup factors for engineering materials

  20. Singh V P, Badiger N M and Kaewkhao J 2014 J. Non-Cryst. Solids 404 167

    Article  Google Scholar 

  21. Chanthima N and Kaewkhao J 2013 Ann. Nucl. Eng. 55 23

    Article  Google Scholar 

  22. Singh K, Kaur S and Kaundal R 2014 Radiat. Phys. Chem. 96 153

    Article  Google Scholar 

  23. Ruengsri S, Insiripong S, Sangwaranatee N and Kaewkhao J 2015 Prog. Nucl. Eng. 83 99

    Article  Google Scholar 

  24. Singh V P, Badiger N M, Chanthima N and Kaewkhao J 2014 Radiat. Phys. Chem. 98 14

    Article  Google Scholar 

  25. Kurudirek M 2014 Nucl. Eng. Des. 280 440

    Article  Google Scholar 

  26. Burger H and Vogel W 1985 Infrared Phys. 25 395

    Article  Google Scholar 

  27. Sidek H, Chow S, Talib Z and Halim S 2004 Turk. J. Phys. 28 65

    Google Scholar 

  28. Sidek H, Rosmawati S, Talib Z, Halimah M K and Daud W 2009 Am. J. Appl. Sci. 6 1489

    Article  Google Scholar 

  29. Gerward L, Guilbert N, Jensen K B and Levring H 2001 Radiat. Phys. Chem. 60 23

    Article  Google Scholar 

  30. Gerward L, Guilbert N, Jensen K B and Levring H 2004 Radiat. Phys. Chem. 71 653

    Article  Google Scholar 

  31. Harima Y 1983 Nucl. Sci. Eng. 83 299

    Article  Google Scholar 

  32. Harima Y 1993 Radiat. Phys. Chem. 41 631

    Article  Google Scholar 

  33. Bootjomchai C, Laopaiboon J, Yenchai C and Laopaiboon R 2012 Radiat. Phys. Chem. 81 785

    Article  Google Scholar 

  34. Kurudirek M and Özdemir Y 2011 J. Radiol. Prot. 31 117

    Article  Google Scholar 

  35. Esra K, Ufuk P, Neslihan E and Yüuksel Ö 2016 Int. J. Radiat. Biol. 28 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shams A M Issa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issa, S.A.M., Sayyed, M.I. & Kurudirek, M. Study of gamma radiation shielding properties of \(\mathbf{ZnO {-}{} \mathbf TeO }_\mathbf{2}\) glasses. Bull Mater Sci 40, 841–857 (2017). https://doi.org/10.1007/s12034-017-1425-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1425-x

Keywords

Navigation