Skip to main content
Log in

One-pot synthesis of CaAl-layered double hydroxide–methotrexate nanohybrid for anticancer application

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

One-pot (co-precipitation) synthesis route was employed for the first time to synthesize pristine CaAl-layered double hydroxide (LDH) and in-situ intercalation of the anticancer drug methotrexate (MTX) to prepare CaAl-LDH–MTX nanohybrid. An increase in the interplanar spacing of the (003) plane from 8.6 Å in pristine CaAl-LDH bilayered structure to 18.26 Å in CaAl-LDH–MTX nanohybrid indicated successful intercalation of anionic MTX into the interlayer space of CaAl-LDH. This was supported by the transmission electron micrographs, which showed an increase in average interlayer spacing from 8.7 Å in pristine LDH to 18.31 Å in LDH–MTX nanohybrid. Particle size and morphology analysis of pristine CaAl-LDH and LDH–MTX nanohybrid using both dynamic light scattering (DLS) technique and transmission electron microscopy (TEM) indicated a decrease in average particle size in LDH–MTX nanohybrid as compared with that of pristine LDH. Thermogravimetric analyses (TGA) revealed an enhancement in decomposition temperature of MTX bound to CaAl-LDH nanohybrid to \(380{^{\circ }}\hbox {C}\) as compared with \(290{^{\circ }}\hbox {C}\) in pure MTX molecule, indicating enhanced thermal stability, which supports stable electrostatic interaction of MTX within the interlayer position of LDH. CHN (carbon hydrogen nitrogen) analysis revealed nearly 49 wt% of MTX loading into CaAl-LDH, which closely matched with the result obtained from TGA of the nanohybrid. Cumulative release of MTX from CaAl-LDH–MTX in phosphate buffer solution showed a non-linear dependence with incubation time. Release mechanism of MTX from LDH–MTX nanohybrid was governed by diffusion mechanism at physiological pH of 7.4. The in vitro cytotoxicity study of LDH–MTX nanohybrid using MG-63 human osteosarcoma cell line indicated enhanced inhibition of the cancer cell proliferation compared with the MTX drug alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cho K J, Wang X, Nie S M, Chen Z and Shin D M 2008 Clin. Cancer Res. 14 1310

    Article  Google Scholar 

  2. Faraji A H and Wipf P 2009 Bioorg. Med. Chem. 17 2950

    Article  Google Scholar 

  3. Li F and Duan X 2006 In: Structure and bonding (Berlin: Springer) vol 119 p 193

  4. Zhang F Z, Xiang X, Li F and Duan X 2008 Catal. Surv. Asia 12 253

    Article  Google Scholar 

  5. Aguzzi C, Cerezo P, Viseras C and Caramella C 2007 Appl. Clay Sci. 36 22

    Article  Google Scholar 

  6. Palmer S J, Frost R L and Nguyen T 2009 Coord. Chem. Rev. 253 250

    Article  Google Scholar 

  7. Prasanna S V, Kamath P V and Shivakumara C 2007 Mater. Res. Bull. 42 1028

    Article  Google Scholar 

  8. Chakraborty M, Dasgupta S, Sengupta S, Chakraborty J, Ghosh S, Ghosh J et al 2012 Ceram. Int. 38 941

  9. Chakraborty M, Dasgupta S, Soundrapandian C, Chakraborty J, Ghosh S, Mitra M K et al 2011 J. Solid State Chem. 184 2439

    Article  Google Scholar 

  10. Newman S P and Jones W 1998 New J. Chem. 22 105

    Article  Google Scholar 

  11. Olfs H W, Torres-Dorante L O, Eckelt R and Kosslick H 2009 Appl. Clay Sci. 43 459

    Article  Google Scholar 

  12. Xiang X, Hima H I, Wang H and Li F 2008 Chem. Mater. 20 1173

    Article  Google Scholar 

  13. Cavani F, Trifro F and Vaccari A 1991 Catal. Today 11 173

    Article  Google Scholar 

  14. Li Y, Liu D, Ai H H, Chang Q, Liu D D, Xia Y et al 2010 Nanotechnology 21 105101

    Article  Google Scholar 

  15. Li B X, He J, Evans D G and Duan X 2004 Appl. Clay Sci. 27 199

    Article  Google Scholar 

  16. Del Arco M, Cebadera E, Gutierrez S, Martin C, Montero M J, Rives V et al 2004 J. Pharm. Sci. 93 1649

    Article  Google Scholar 

  17. Choy J H, Jung J S, Oh J M, Park M, Jeong J, Kang Y K et al 2004 Biomaterials 25 3059

  18. Nakayama H, Takeshita K and Tsuhako M 2003 J. Pharm. Sci. 92 2419

    Article  Google Scholar 

  19. Lee J H and Jung D Y 2012 Chem. Commun. 48 5641

    Article  Google Scholar 

  20. Khan A I, Lei L X, Norquist A J and O’Hare D 2001 Chem. Commun. 22 2342

    Article  Google Scholar 

  21. Plank J, Dai Z and Andres P R 2006 Mater. Lett. 60 3614

    Article  Google Scholar 

  22. Mandal S, Chatterjee N, Das S, Saha K D and Chaudhuri K 2007 RSC Adv. 4 20077

  23. Liu W M and Dalgleish A G 2009 Chemother. Pharmacol. 64 861

  24. Walters D K, Muff R, Langsam B, Born W and Fuchs B 2008 Invest. New Drugs 26 289

    Article  Google Scholar 

  25. Gago S, Costa T, de Melo J S, Goncalves I S and Pillinger M 2008 J. Mater. Chem. 18 894

    Article  Google Scholar 

  26. Roman M S S, Holgado M J, Jaubertie C and Rives V 2008 Solid State Sci. 10 1333

    Article  Google Scholar 

  27. Radha A V, Kamath P V and Shivakumara C 2005 Solid State Sci. 7 1180

  28. Xu Y, Dai Y, Zhou J, Xu Z P, Qian G and Lu G Q M 2010 J. Mater. Chem. 20 4684

    Article  Google Scholar 

  29. Plank J, Keller H, Andres P R and Dai Z 2006 Inorg. Chim. Acta 359 4901

    Article  Google Scholar 

  30. Giraudeau C, De Lacaillerie J B D, Souguir Z, Nonat A and Flatt R J 2009 J. Am. Ceram. Soc. 92 2471

    Article  Google Scholar 

  31. Shafiei S S, Solati-Hashjin M, Rahim-Zadeh H and Samadikuchaksaraei A 2009 Adv. Appl. Ceram. 112 59

  32. Matusinovic Z, Rogosic M and Sipusic J 2009 Polym. Degrad. Stabil. 94 95

    Article  Google Scholar 

  33. Puttaswamy N S and Kamath P V 1997 J. Mater. Chem. 7 1941

    Google Scholar 

  34. Manzi-Nshuti C, Chen D, Su S and Wilkie C A 2009 Thermochim. Acta 495 63

    Article  Google Scholar 

  35. Li F, Jin L, Han J, Wei M and Li C 2009 Ind. Eng. Chem. Res. 48 5590

    Article  Google Scholar 

  36. Dave B S, Amin A F and Patel M M 2004 AAPS Pharm. Sci. Tech. 5 77

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Director, Central Glass and Ceramic Research Institute, Kolkata, India, for giving permission and facilities to carry out this work. Thanks are due to all the supporting staff for various characterization works. This work was supported financially by the Council of Scientific and Industrial Research, New Delhi, via project number NWP 0035, of 11th 5-year plan network program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, M., Mitra, M.K. & Chakraborty, J. One-pot synthesis of CaAl-layered double hydroxide–methotrexate nanohybrid for anticancer application. Bull Mater Sci 40, 1203–1211 (2017). https://doi.org/10.1007/s12034-017-1468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1468-z

Keywords

Navigation