Skip to main content
Log in

Adsorption of small gas molecules on pure and Al-doped graphene sheet: a quantum mechanical study

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The interaction of small gas molecules (\(\hbox {CCl}_{4}\), \(\hbox {CH}_{4}\), \(\hbox {NH}_{3}\), \(\hbox {CO}_{2}\), \(\hbox {N}_{2}\), CO, \(\hbox {NO}_{2}, \hbox {CCl}_{2}\hbox {F}_{2}\), \(\hbox {SO}_{2}\), \(\hbox {CF}_{4}\), \(\hbox {H}_{2}\)) on pure and aluminium-doped graphene were investigated by using the density functional theory to explore their potential applications as sensors. It has been found that all gas molecules show much stronger adsorption on the Al-doped graphene than that of pure graphene (PG). The Al-doped graphene shows the highest adsorption energy with \(\hbox {NO}_{2}\), \(\hbox {NH}_{3}\) and \(\hbox {CO}_{2}\) molecules, whereas the PG binds strongly with \(\hbox {NO}_{2}\). Therefore, the strong interactions between the adsorbed gas molecules and the Al-doped graphene induce dramatic changes to graphene’s electronic properties. These results reveal that the sensitivity of graphene-based gas sensor could be drastically improved by introducing the appropriate dopant or defect. It also carried out the highest occupied molecular orbital–lowest unoccupied molecular orbital energy gap of the complex molecular structure that has been explored by M06/6-31++G** method. These results indicate that the energy gap fine tuning of the pure and Al-doped graphene can be affected through the binding of small gas molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hirsch A 2010 Nat. Mater. 9 868

    Article  Google Scholar 

  2. Rao C N R, Sood A K, Subrahmanyam K S and Govindaraj A 2009 Angew. Chem. Int. Ed. 48 7752

    Article  Google Scholar 

  3. Iijima S 1991 Nature 354 56

    Article  Google Scholar 

  4. Liu J, Cui L and Losic D 2013 Acta Biomater. 9 9243

    Article  Google Scholar 

  5. Dinadayalane T C and Leszcznski J 2010 Struct. Chem. 21 1155

    Article  Google Scholar 

  6. Liang F and Chen B 2010 Curr. Med. Chem. 17 10

    Article  Google Scholar 

  7. Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R et al 2010 Adv. Mater. 22 3906

    Article  Google Scholar 

  8. Goldoni A, Larciprete R, Petaccia L and Lizzit S 2003 J. Am. Chem. Soc. 125 11329

    Article  Google Scholar 

  9. Guo Z, Feng Y, He S, Qu M, Chen H, Liu H et al 2012 Adv. Mater. 25 584

    Article  Google Scholar 

  10. Zhong J, Chiou J, Dong C, Glans P A, Pong W F, Chang C et al 2012 Appl. Phys. Lett. 100 201605

  11. Umadevi D, Panigrahi S and Sastry G N 2014 Acc. Chem. Res. 47 2574

    Article  Google Scholar 

  12. Vijay D and Sastry G N 2010 Chem. Phys. Lett. 485 235

    Article  Google Scholar 

  13. Shi G, Ding Y and Fang H 2012 J. Comput. Chem. 33 1328

    Article  Google Scholar 

  14. Grabowski S J and Lipkowski P 2011 J. Phys. Chem. A 115 4765

    Article  Google Scholar 

  15. Mahadevi A S and Sastry G N 2016 Chem. Rev. 116 2775

    Article  Google Scholar 

  16. Charlier J C 2002 Acc. Chem. Res. 35 1063

    Article  Google Scholar 

  17. Huang P, Zhu H, Jing L, Zhao Y and Cao X 2011 ACS Nano 5 7945

    Article  Google Scholar 

  18. Dougherty D A 1996 Science 271 163

    Article  Google Scholar 

  19. Kim S K, Hu S, Tarakeshwar P and Lee J Y 2000 Chem. Rev. 100 4145

    Article  Google Scholar 

  20. Ready A S and Sastry G N 2005 J. Phys. Chem. A 109 8893

    Article  Google Scholar 

  21. Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I et al 2007 Nat. Mater. 6 652

  22. Wang X, Sun G, Routh P, Kim D H, Huang W and Chen P 2014 Chem. Soc. Rev. 43 7067

    Article  Google Scholar 

  23. Lherbier A, Blase R X, Niquet Y, Triozon F and Roche S 2008 Phys. Rev. Lett. 101 036808

    Article  Google Scholar 

  24. Lv Y-A, G-l Zhuang G-I, Wang J-g, Jia Y-B and Xie Q 2011 Phys. Chem. Chem. Phys. 13 12472

    Article  Google Scholar 

  25. Cho B, Yoon J, Hahm M G, Kim D H, Kim A R, Kahng Y H et al 2014 J. Mater. Chem. 2 5280

    Google Scholar 

  26. Kong J, Franklin N, Zhou C, Chapline M, Peng S, Cho K et al 2000 Science 287 622

  27. Umadevi D and Sastry G N 2011 J. Phys. Chem. C 115 9656

    Article  Google Scholar 

  28. Umadevi D and Sastry G N 2011 J. Phys. Chem. Lett. 2 1572

    Article  Google Scholar 

  29. Chen W, Duan L and Zhu D 2007 Environ. Sci. Technol. 41 8295

    Article  Google Scholar 

  30. Panigrahi S, Bhattacharya S, Banerjee S and Bhattacharyya D 2012 J. Phys. Chem. C 116 4374

    Article  Google Scholar 

  31. Roman T, Dino W A, Nakanishi H and Kasai H 2006 Eur. Phys. J. D. 38 117

    Article  Google Scholar 

  32. Kumar A, Reddy A L M, Mukherjee A, Dubey M, Zhan X, Singh N et al 2011 ACS Nano 5 4345

    Article  Google Scholar 

  33. Reddy A L M, Srivastav A, Gowda S R, Gullapalli H, Dubey M and Ajayan P M 2010 ACS Nano 4 6337

    Article  Google Scholar 

  34. Rao J S, Zipse H and Sastry G N 2009 J. Phys. Chem. B 113 7225

    Article  Google Scholar 

  35. Sharma B, Rao J S and Sastry G N 2011 J. Phys. Chem. A 115 1971

    Article  Google Scholar 

  36. Mahadevi A S and Sastry G N 2011 J. Phys. Chem. B 115 703

    Article  Google Scholar 

  37. Umadevi D and Sastry G N 2015 Phys. Chem. Chem. Phys. 17 30260

    Article  Google Scholar 

  38. Zhang Y H, Chen Y B, Zhou K C, Liu C H, Zeng J, Zhang H L et al 2009 Nanotechnology 20 185504

    Article  Google Scholar 

  39. Zou Y, Li F, Zhu Z H, Zhao M W, Xu X G and Su X Y 2011 Eur. Phys. B 81 475

    Article  Google Scholar 

  40. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  Google Scholar 

  41. Ditchfield R, Hehre W J and Pople J A 1971 J. Chem. Phys. 54 724

    Article  Google Scholar 

  42. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R et al 2010 Gaussian Inc., Wallingford, CT

  43. Zhao Y and Truhlar D G 2008 Theor. Chem. Acc. 120 215

    Article  Google Scholar 

  44. Petersson G A, Bennett A, Tensfeldt T G, Al-Laham M A, Shirley W A and Mantzaris J 1988 J. Chem. Phys. 89 2193

    Article  Google Scholar 

  45. Petersson G A and Al-Laham M A 1991 J. Chem. Phys. 94 6081

    Article  Google Scholar 

  46. Frisch M J, Pople J A and Binkley J S 1984 J. Chem. Phys. 80 3265

    Article  Google Scholar 

  47. Dai J Y and Yuan J M 2010 Phys. Rev. B 81 165414

    Article  Google Scholar 

  48. Bai L and Zhou Z 2007 Carbon 45 2105

    Article  Google Scholar 

  49. Charles W, Bauschlicher J and Ricca A 2004 Phys. Rev. B 70 115409

    Article  Google Scholar 

Download references

Acknowledgements

Dharmveer Singh and Asheesh Kumar acknowledge their financial support from the University Grants Commission (UGC), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Kumar, A. & Kumar, D. Adsorption of small gas molecules on pure and Al-doped graphene sheet: a quantum mechanical study. Bull Mater Sci 40, 1263–1271 (2017). https://doi.org/10.1007/s12034-017-1478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1478-x

Keywords

Navigation