Skip to main content

Advertisement

Log in

Effects of multi-wall carbon nanotubes on structural and mechanical properties of poly(3-hydroxybutyrate)/chitosan electrospun scaffolds for cartilage tissue engineering

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Poly(3-hydroxybutyrate) (PHB)/chitosan electrospun scaffold was recently prepared for cartilage tissue engineering purpose. The drawback of this scaffold was its low mechanical properties. This study was carried out to see if addition of multi-wall carbon nanotubes (MWNTs) to PHB/chitosan polymeric blend can show better mechanical and structural properties. To do this, three different amounts of MWNTs (0.5, 0.75 and 1 wt%) were added to PHB/chitosan solution. Then, the prepared solution was electrospun. The fibre’s diameter and uniformity were assessed by SEM. The solution components entity authenticity was approved by FTIR. The porosity assessment was illustrated by a porous structure with 81–83% porosity. Water contact angle (WCA) test showed the decrease in contact angle with the increase in MWNTs. Mechanical property results showed the strength of about 4–10 MPa for composites with different percentages of MWNTs, while PHB/chitosan showed the strength of 3 MPa. Actually, the mechanical properties of composite showed higher values when compared to polymeric blend scaffold. All the results reveal that the addition of 1 wt% of MWNTs to the polymeric solution is the most optimal percentage whose values are close to cartilage properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kaufman M R and Tobias G W 2003 Clin. Plast. Surg. 30 539

    Article  Google Scholar 

  2. Freeman M A R 2011 Adult articulate cartilage

  3. Mort J S and Billington C J 2001 Arthritis Res. 3 337

    Article  Google Scholar 

  4. Hutmacher D 2001 J. Biomater. Sci. Polym. Ed. 2 107

    Article  Google Scholar 

  5. Woodfield T B, Malda J, Wijn J, Peters F, Riesle J and Blitterswijk C A 2004 Biomaterials 25 4149

  6. Hollister S J 2005 Nat. Mater. 4 518

    Article  Google Scholar 

  7. Sadeghi D, Karbasi S, Razavi S, Mohammadi S, Shokrgozar M A and Bonakdar S 2016 J. Appl. Polym. Sci. 133 44171

  8. Dai H 2002 Acc. Chem. Res. 35 1035

    Article  Google Scholar 

  9. Wildgoose G G, Banks E C, Leventis C H and Compton G R 2005 Microchim. Acta 152 187

    Article  Google Scholar 

  10. Balasubramanian K and Burghard M 2005 Small 1 180

    Article  Google Scholar 

  11. Harrison B S and Atala A 2007 Biomaterials 28 344

    Article  Google Scholar 

  12. Kharaziha M, Shin S R, Nikkhah M, Topkaya S N, Masoumi N, Annabi N et al 2014 Biomaterials 35 7346

    Article  Google Scholar 

  13. Shi X F, Hudson J L, Spicer P P, Tour J M, Krishnamoorti R and Mikos A G 2006 Biomacromolecules 7 2237

    Article  Google Scholar 

  14. Fujihara K, Kotaki M and Ramakrishna S 2005 Biomaterials 26 4139

    Article  Google Scholar 

  15. Wang S-F, Shen L, Zhang W-D and Tong Y-J 2005 Biomacromolecules 6 3067

    Article  Google Scholar 

  16. Sell S, Barnes C, Simpson D and Bowlin G 2008 J. Biomed. Mater. Res. Part A 85 115

    Article  Google Scholar 

  17. Mohammadian M and Haughi A K 2014 Bulg. Chem. Commun. 46 545

    Google Scholar 

  18. Boland E D, Coleman B D, Barnes C P, Simpson D G, Wnek G E and Bowlin G L 2005 Acta Biomater. 1 115

    Article  Google Scholar 

  19. Chen G-Q and Wu Q T 2005 Biomaterials 26 6565

    Article  Google Scholar 

  20. Calvo P and Remunan-Lopez C 1997 J. Appl. Polym. Sci. 63 125

    Article  Google Scholar 

  21. Park J M, Wang Z J, Jang J H, Gnidakoung J R N, Lee W I, Park J K et al 2009 Composites. Part A: Appl. Sci. Manuf. 40 1722

    Article  Google Scholar 

  22. Mattioli-Belmonte M, Vozzi G, Whulanza Y, Seggiani M, Fantauzzi V, Orsini G et al 2012 Mater. Sci. Eng. C 32 152

    Article  Google Scholar 

  23. Liu Y L, Chen W H and Chang Y H 2009 Carbohyd. Polym. 76 232

    Article  Google Scholar 

  24. Guo C, Zhou L and Lv J 2013 Polym. Polym. Compos. 21 449

    Google Scholar 

  25. Thambyah A, Nather A and Goh J 2006 Osteoarthr. Cartilage 14 580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Karbasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karbasi, S., Alizadeh, Z.M. Effects of multi-wall carbon nanotubes on structural and mechanical properties of poly(3-hydroxybutyrate)/chitosan electrospun scaffolds for cartilage tissue engineering. Bull Mater Sci 40, 1247–1253 (2017). https://doi.org/10.1007/s12034-017-1479-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1479-9

Keywords

Navigation