Skip to main content
Log in

Photoluminescence quenching and photocatalytic enhancement of Pr-doped ZnO nanocrystals

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This work reports the synthesis of novel praseodymium (Pr)-doped ZnO nanocrystals with excellent photocatalytic activity through modified solid-state reaction route. The impacts of doping on the wurtzite hexagonal structure are analysed with X-ray diffraction (XRD) and Raman spectroscopy. The production of defect levels and the formation of Urbach energy within the system are confirmed using photoluminescence (PL) techniques and UV/Vis diffuse reflectance spectroscopy, respectively. The linear relationship between Urbach energy and band gap energy is elucidated from UV/Vis spectroscopy analysis. The changes happened to morphology by doping were tackled using scanning electron microscopy (SEM). The concentration quenching effect of PL emission with Pr doping is explained in detail. A three-fold enhancement in the photocatalytic activity was achieved with optimum Pr incorporation in ZnO. This work successfully correlated PL quenching and enhanced photocatalytic activity with the defect production happened in ZnO system on Pr doping. The practical applicability of the photocatalyst was confirmed with a stability test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ishizum Y and Kanemitsu I 2005 Appl. Phys. Lett. 86 253106

    Article  Google Scholar 

  2. Jiang F, Peng Z, Zang Y and Fu X 2013 J. Adv. Ceram. 2 201

    Article  Google Scholar 

  3. Chen G Y, Liu H C, Somesfalean G, Sheng Y Q, Liang H J, Zhang Z G et al 2008 Appl. Phys. Lett. 92 113114

  4. Rodnyi P A and Khodyuk I V 2011 Opt. Spectrosc. 111 776

    Article  Google Scholar 

  5. Yi J, Huang L, Wang H, Yu H and Peng F 2015 J. Hazard. Mater. 284 207

    Article  Google Scholar 

  6. Vignesh K, Suganthi A, Rajarajan M and Sara S A 2012 Powder Technol. 224 331

    Article  Google Scholar 

  7. Flores N M, Pal U, Galeazzi R and Sandoval A 2004 RSC Adv. 4 41099

    Article  Google Scholar 

  8. De Lourdes Ruiz Peralta M, Pal U and Sanchez Zeferino R 2012 Appl. Mater. Interf. 4 4807

    Article  Google Scholar 

  9. Susarrey-Arce A, Herrera-Zaldivar M, de la Cruz W and Pal U 2009 J. Nanores.  5 177

    Google Scholar 

  10. Mohandes F and Salavati-Niasari M 2013 Mater. Res. Bull. 48 3773

    Article  Google Scholar 

  11. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M et al 2014 Chem. Rev. 114 9919

    Article  Google Scholar 

  12. Saleh R and Djaja N F 2014 Superlatt. Microstruct. 74 217

    Article  Google Scholar 

  13. Li X and Ye J 2007 J. Phys. Chem. C 111 13109

    Article  Google Scholar 

  14. Yayapao O, Thongtem T, Phuruangrat A and Thongtem S 2015 Mater. Sci. Semicond. Process. 39 786

    Article  Google Scholar 

  15. Zhao Z, Song J-L, Zheng J-H and Lian J-S 2014 Trans. Nonferr. Met. Soc. China 24 1434

    Article  Google Scholar 

  16. Divya N K and Pradyumnan P P 2016 Mater. Sci. Semicond. Process. 41 428

    Article  Google Scholar 

  17. Kim S Y, Lim T-H, Chang T-S and Shin C-H 2007 Catal. Lett. 117 112

    Article  Google Scholar 

  18. Willander M, Nur O, Sadaf J R, Qadir M I, Zaman S, Zainelabdin A et al 2010 Mater. 3 2643

    Article  Google Scholar 

  19. Divya N K and Pradyumnan P P 2017 J. Mater. Sci.: Mater. Electron. 28 2147

    Article  Google Scholar 

  20. Choi H C, Jung Y M and Kim S B 2005 Vibr. Spectrosc. 37 33

    Article  Google Scholar 

  21. Ghosh M, Dilawar N, Bandyopadhay A K and Raychaudhari A K 2009 J. Appl. Phys. 106 084306

    Article  Google Scholar 

  22. Divya N K and Pradyumnan P P 2017 Mater. Res. Exp. 4 015904

    Article  Google Scholar 

  23. John R and Rajakumari R 2012 Nano-Micro Lett. 4 65

    Article  Google Scholar 

  24. Klubnuan S, Suwanboon S and Amornpitoksuk P 2016 Opt. Mater. 53 134

    Article  Google Scholar 

Download references

Acknowledgements

UGC-SAP support for this investigation (No. F.7-180/2007 (BSR)) is gratefully acknowledged. PPP thanks DST-SERB-Govt. of India (SB/EMEQ-002/2013), DST-FIST-Govt. of India, Department of Physics, University of Calicut, for financial assistance and equipment facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P P Pradyumnan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 132 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, N.K., Pradyumnan, P.P. Photoluminescence quenching and photocatalytic enhancement of Pr-doped ZnO nanocrystals. Bull Mater Sci 40, 1405–1413 (2017). https://doi.org/10.1007/s12034-017-1507-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-017-1507-9

Keywords

Navigation