Skip to main content
Log in

Gallium nitride nanocrystal formation in Si3N4 matrix by ion synthesis

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Synthesis of nanoparticles in insulators attracts tremendous attention due to their unique electrical and optical properties. Here, the gallium (Ga) and gallium nitride (GaN) nanoclusters have been synthesized in the silicon nitride matrix by sequential ion implantation (gallium and nitrogen ions) followed by either furnace annealing (FA) or rapid thermal annealing (RTA). The presence of Ga and GaN nanoclusters has been confirmed by Fourier-transform infrared, Raman and X-ray photoelectron spectroscopy. Thereafter, the effect of RTA and FA on the conduction of charge carriers has been studied for the fabricated devices. It is found from the current–voltage measurements that the carrier transport is controlled by the space charge limited current conduction mechanism, and the observed values of parameter m (trap density and the distribution of localized state) for the FA and RTA devices are ~2 and ~4.1, respectively. This reveals that more defects are formed in the RTA device and that FA provides better performance than RTA from the viewpoint of opto- and nano-electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Morkoç H (ed) 2009 Handbook of nitride semiconductors and devices, GaN-based optical and electronic devices (Weinheim: Wiley-VCH Verlag GmbH)

    Google Scholar 

  2. Kumar M, Roul B, Bhat T N, Rajpalke M K, Misra P, Kukreja L M et al 2010 Mater. Res. Bull. 45 1581

    Article  CAS  Google Scholar 

  3. Kumar M, Rajpalke M K, Roul B, Bhat T N, Sinha N, Kalghatgi A T et al 2011 Appl. Surf. Sci. 257 2107

    Article  CAS  Google Scholar 

  4. Appleton B R, Naramoto H, White C W, Holland O W, McHargue C J, Farlow G et al 1984 Nucl. Instrum. Methods Phys. Res., Sect. B 1 167

    Article  Google Scholar 

  5. Van Hassel B A and Burggraaf A J 1989 Appl. Phys. A 49 33

    Article  Google Scholar 

  6. White C W, Boatner L A, Sklad P S, McHargue C J, Rankin J, Farlow G C et al 1988 Nucl. Instrum. Methods Phys. Res., Sect. B 32 11

    Article  Google Scholar 

  7. Lamb D R (ed) 1967 Electrical conduction mechanisms in thin insulating films (London: Methuen and Co. Ltd)

    Google Scholar 

  8. Gibbons J F 1972 Proc. IEEE 60 1062

    Article  CAS  Google Scholar 

  9. Naramoto H, White C W, Williams J M, McHargue C J, Holland O W, Abraham M M et al 1983 J. Appl. Phys. 54 683

    Article  CAS  Google Scholar 

  10. McHargue C J, Lewis M B, Appleton B R, Naramoto H, White C W and Williams J M 1983 in Science of hard materials R K Viswanadham, D J Rowcliffe and J Gurland (eds) (Boston: Springer) p 451

  11. McHargue C J 1987 Nucl. Instrum. Methods Phys. Res., Sect. B 19 797

    Article  Google Scholar 

  12. McHargue C J, Kossowsky R and Hofer W O (eds) 2012 Structure–property relationships in surface-modified ceramics (Netherlands: Springer)

    Google Scholar 

  13. Bolse W and Peteves S D 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 68 331

    Article  Google Scholar 

  14. Ohkubo M, Hioki T and Kawamoto J 1987 J. Appl. Phys. 62 3069

    Article  CAS  Google Scholar 

  15. Burnett P J and Page T F 1984 J. Mater. Sci. 19 3524

    Article  CAS  Google Scholar 

  16. Fleuster M, Buchal C, Snoeks E and Polman A 1994 Appl. Phys. Lett. 65 225

    Article  CAS  Google Scholar 

  17. Rajamani S, Korolev D, Belov A, Surodin S, Nikolitchev D, Okulich E et al 2016 RSC Adv. 6 74691

    Article  CAS  Google Scholar 

  18. Borsella E, Garcia M A, Mattei G, Maurizio C, Mazzoldi P, Cattaruzza E et al 2001 J. Appl. Phys. 90 4467

    Article  CAS  Google Scholar 

  19. Komarov F, Vlasukova L, Greben M, Milchanin O, Zuk J, Wesch W et al 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 307 102

    Article  CAS  Google Scholar 

  20. Korolev D S, Mikhaylov A N, Belov A I, Konakov A A, Vasiliev V K, Nikolitchev D E et al 2017 Int. J. Nanotechnol. 14 637

    Article  CAS  Google Scholar 

  21. Korolev D S, Mikhaylov A N, Belov A I, Vasiliev V K, Guseinov D V, Okulich E V et al 2016 Semiconductors 50 271

    Article  CAS  Google Scholar 

  22. Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818

    Article  CAS  Google Scholar 

  23. Boryakov A V, Surodin S I, Kryukov R N, Nikolichev D E and Zubkov S Y 2018 J. Electron Spectrosc. Relat. Phenom. 229 132

    Article  CAS  Google Scholar 

  24. Huantao D, Wenping G, Jincheng Z, Yue H, Chi C, Jinyu N et al 2009 J. Semicond. 30 073001

    Article  Google Scholar 

  25. Mayer J W 1968 IEEE Trans. Nucl. Sci. 15 10

    Article  Google Scholar 

  26. Eisen F H and Chadderton L T (eds) 1971 Ion implantation (New York: Gordon and Breach Science Publishers)

    Google Scholar 

  27. Mayer J W 1973 IEEE International Electron Devices Meeting p 3

  28. Yanagiya S and Ishida M 1999 J. Electron. Mater. 28 496

    Article  CAS  Google Scholar 

  29. Joung D, Chunder A, Zhai L and Khondaker S I 2010 Appl. Phys. Lett. 97 093105

    Article  Google Scholar 

  30. Burr T A, Seraphin A A, Werwa E and Kolenbrander K D 1997 Phys. Rev. B 56 4818

    Article  CAS  Google Scholar 

  31. Sze S M (ed) 1981 Physics of semiconductor devices (N. Y.: Wiley)

  32. Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 1

    Google Scholar 

  33. Wagle S and Shirodkar V 2000 Braz. J. Phys. 30 380

    CAS  Google Scholar 

  34. Orwa J O, Shannon J M, Gateru R G and Silva S R P 2005 J. Appl. Phys. 97 023519

    Article  Google Scholar 

  35. Lampert M A and Mark P (eds) 1970 Current injection in solids (New York, London: Academic Press)

    Google Scholar 

  36. Kwan C P, Street M, Mahmood A, Echtenkamp W, Randle M, He K et al 2019 AIP Adv. 9 055018

    Article  Google Scholar 

  37. Rose A 1955 Phys. Rev. 97 1538

    Article  CAS  Google Scholar 

  38. Mott N F and Davis E A (eds) 2012 Electronic processes in non-crystalline materials (Oxford: Oxford University Press)

    Google Scholar 

  39. Kao K C (ed) 2004 Dielectric phenomena in solids (Amsterdam: Academic Press) p 327

    Book  Google Scholar 

  40. Scott J F 2014 J. Phys.: Condens. Matter 26 142202

    CAS  Google Scholar 

  41. Mark P and Helfrich W 1962 J. Appl. Phys. 33 205

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the Ministry of Education and Science of the Russian Federation (RFMEFI58414X0008) and the Department of Science and Technology, India (INT/RUS/RMES/P-04/2014). The Raman spectroscopy study was performed at the Laboratory of Functional Nanomaterials (Lobachevsky University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAHESH KUMAR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAJBHAR, M.K., RAJAMANI, S., SINGH, S.K. et al. Gallium nitride nanocrystal formation in Si3N4 matrix by ion synthesis. Bull Mater Sci 43, 234 (2020). https://doi.org/10.1007/s12034-020-02181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02181-9

Keywords

Navigation