Skip to main content
Log in

Negative capacitance effect of Cu–TiC thin film deposited by DC magnetron plasma

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The quest for low power consumption devices with new functionalities has made the negative capacitance (NC) effect, the most captivating and studied phenomenon. The NC effect is observed in Cu–TiC thin film at a low-frequency range between 112.9 Hz and 2 kHz. The Cu–TiC thin film was deposited on Si (100) substrate by DC magnetron co-sputtering process and then annealed in a vacuum at different temperatures (100–600°C). The magnitude of NC increased from −0.016 to −27.5 µF after annealing. The NC behaviour is also observed in the forward biased region of the capacitance–voltage (CV) characteristics. The current–voltage (IV) characteristics reveal the decreasing static and dynamic resistance for higher annealed films. An improved electrical conductivity (27.70 × 103 to 384.62 × 103 S m−1) is evidenced with decreasing ideality factor (2.01–0.55) in the post-annealed films. The films were found to be polycrystalline from X-ray diffraction patterns with Cu and TiC phases. Raman studies have also confirmed the presence of Cu and TiC vibrational modes in all films. The intensity of C peaks detected at 1359 cm−1 (D peak) and at 1590 cm−1 (G peak) in the as-deposited film decreased after annealing. The annealing effect reduced the amount of unreacted carbon and contributed to form stoichiometric TiC from non-stoichiometric TiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Groza J R and Gibeling J C 1993 Mater. Sci. Eng. A 171 115

    Google Scholar 

  2. Kim H G, Hanb S Z, Euhb K and Lim S H 2011 Mater. Sci. Eng. A 530 652

    CAS  Google Scholar 

  3. Barmouz M, Givi M K B and Seyfi J 2011 Mater. Charact. 62 108

    CAS  Google Scholar 

  4. Perez J F and Morris D G 1994 Scripta Metall. Mater. 31 231

    CAS  Google Scholar 

  5. Cho T, Bat D G and Woerner P F 1986 Surf. Coat. Technol. 29 239

    CAS  Google Scholar 

  6. Pancielejko M, Precht W and Czyzniewski A 2010 Vacuum 53 57

    Google Scholar 

  7. Zhuang J, Liu W B, Cao Z Y and Li Y Y 2010 Mats. Trans. 51 2311

    CAS  Google Scholar 

  8. Sabbaghiana M, Shamanian M, Akramifard H R and Esmailzadeh M 2014 Ceramics Intl. 40 12969

    Google Scholar 

  9. Rathod S, Modi O P, Prasad B K, Chrysanthou A, Vallauri D, Deshmukh V P et al 2009 Mater. Sci. Eng. A 502 91

    Google Scholar 

  10. Liang Y, Zhao Q, Zhang Z, Li X and Ren L 2014 J. Asian Ceram. Soc. 2 281

    Google Scholar 

  11. Soldan J and Musil J 2006 Vacuum 81 531

    CAS  Google Scholar 

  12. Chrysanthou A and Erbaccio G 1996 J. Mater. Sci. Lett. 15 774

    CAS  Google Scholar 

  13. Ogata K, Sakurai K, Fujita S and Matsushige K 2000 J. Cryst. Growth 214–215 312

    Google Scholar 

  14. Zhu D, Tang K, Song M and Tu M 2006 Trans. Nonferrous Met. Soc. China 16 459

    CAS  Google Scholar 

  15. Appleby D J R, Ponon N K, Kwa K S K, Zou B, Petrov P K, Wang T et al 2014 Nano Lett. 14 3864

    CAS  Google Scholar 

  16. Laurenti M, Verna A and Chiolerio A 2015 ACS Appl. Mater. Interfaces 7 24470

    CAS  Google Scholar 

  17. Chen N C, Wang P Y and Chen J F 1998 Appl. Phys Lett. 72 1081

    CAS  Google Scholar 

  18. Wang C C, Liu G Z, He M and Lu H B 2008 Appl. Phys. Lett. 92 052905

  19. Bakueva L, Konstantatos G, Musikhin S, Ruda H E and Shik E 2004 Appl. Phys. Lett. 85 16

    Google Scholar 

  20. Ershov M, Liu H C, Li L, Buchanan M, Wasilewski Z R and Jonsche A K 1998 IEEE Trans. Electron. Devices 45 10

    Google Scholar 

  21. Wu X, Yang E S and Evans H L 1990 J. Appl. Phys. 68 2845

    CAS  Google Scholar 

  22. Jonscher A K and Robinson M N 1888 Solid-State Electron. 31 1277

    Google Scholar 

  23. Champness C H and Clark W R 1990 Appl. Phys. Lett. 56 1104

    CAS  Google Scholar 

  24. Ehrenfreund E, Lungenschmied C, Dennler G, Neugebauer H and Sariciftci N S 2007 Appl. Phys. Lett. 91 012

    Google Scholar 

  25. Jonscher A K 1986 J. Chem. Soc., Faraday Trans. 82 75

  26. Das S C, Majumdar A, Katiyal S, Shripathi T and Hippler R 2014 Rev. Sci. Instrum. 85 025107

    Google Scholar 

  27. Cai K J, Zheng Y, Shena P and Chen S Y 2010 CrystEng Comm 16 5466

    Google Scholar 

  28. Shah J M, Li Y L, Gessmann T and Schubert E F 2003 J. Appl. Phys. 94 4

    Google Scholar 

  29. Gokarna A, Pavaskar N R, Sathaye S D, Ganesan V and Bhoraskar S V 2002 J. Appl. Phys. 92 4

    Google Scholar 

  30. Kalenga M P, Govindraju S, Airo M, Moloto M J, Sikhwivhilu L M and Moloto N 2015 J. Nanosci. Nanotech. 15 4480

    CAS  Google Scholar 

  31. Ferrari A C and Robertson J 1999 Phys. Rev. B 61 14095

    Google Scholar 

  32. Parravicini G B, Stella A, Ungureanu M C and Kofman R 2004 Appl. Phys. Lett. 85 302

    CAS  Google Scholar 

  33. Landau L D and Lifshitz E M 1960 Electrodynamics of continuous media (Oxford: Pergamon)

    Google Scholar 

  34. Hoffmann M, Fengler F P G and Herzig M 2019 Nature 565 464

    CAS  Google Scholar 

  35. Park H W, Roh J, Lee Y B and Hwang C S 2019 Adv. Mater. 31 1805266

  36. Salahuddin S and Datta S 2008 Nano Lett. 8 405

    CAS  Google Scholar 

  37. Khan A K, Chatterjee K, Wang B, Drapcho S, You L, Serrao C et al 2015 Nat. Mater. 14 182

    CAS  Google Scholar 

  38. Íñiguez J, Zubko P, Luk’yanchuk I and Cano A 2019 Nat. Rev. Mater. 4 243

  39. Lohse B H, Calka A and Wexler D 2005 J. Appl. Phys. 97 114912

    Google Scholar 

  40. Deng Y, Handoko A D, Du Y, Xi S and Yeo B S 2016 ACS Catal. 6 2473

    CAS  Google Scholar 

  41. Lespade P, Al-Jishi R and Dresselhaus M S 1982 Carbon 20 427

    CAS  Google Scholar 

  42. Lespade P, Marchard A, Couzi M and Cruege F 1984 Carbon 22 375

    CAS  Google Scholar 

  43. Nemanich R J and Solin S A 1979 Phys. Rev. B 20 392

    CAS  Google Scholar 

  44. Klein M V, Holy J A and Williams W S 1978 Phys. Rev. B 17 1546

    CAS  Google Scholar 

  45. Amer M, Barsoum M W, El-Raghy T, Weiss I, Leclair S and Liptak D 1998 J. Appl. Phys. 84 5817

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Sadhan Chandra Das and Dr Vasant Sathe, UGC-DAE CSR, Indore, India for their help in Raman experiments. We are also thankful to Professor Sukhen Das, Department of Physics, Jadavpur University, Kolkata, India, for providing the support of impedance analyser measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishek Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Mukhopadhyay, A.K., Gupta, M. et al. Negative capacitance effect of Cu–TiC thin film deposited by DC magnetron plasma. Bull Mater Sci 43, 260 (2020). https://doi.org/10.1007/s12034-020-02234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02234-z

Keywords

Navigation