Skip to main content

Advertisement

Log in

Changes in Brain Cholesterol Metabolome After Excitotoxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Excitotoxicity due to excess stimulation of glutamate receptors in neurons is accompanied by increased Ca2+ influx, stimulation of Ca2+-dependent enzymes, ATP depletion, increase in lipid peroxidation products, and loss of glutathione. These changes resemble neurochemical alterations in acute neuronal injury (stroke, spinal cord injury, and traumatic brain injury) and chronic neurodegenerative diseases such as Alzheimer’s disease. Intracerebroventricular injection of the potent glutamate analog kainate in rats results in increased cholesterol concentration in the hippocampus at short to medium time intervals, i.e., 3 days–1 week post-injection, as detected by gas chromatography–mass spectrometry in the lesioned hippocampus. This is accompanied by an early increase in levels of cholesterol biosynthetic precursors and increases in both enzymatically derived oxysterols such as 24-hydroxycholesterol and cholesterol oxidation products (COPs) generated by reactive oxygen species, including cholesterol epoxides and 7-ketocholesterol. In contrast to COPs, no change in concentration of the neurosteroid pregnenolone was found after KA injury. Cholesterol and COPs significantly increase exocytosis in cultured PC12 cells and neurons, and both oxysterols and COPs are able to induce cytotoxic and apoptotic injuries in different cell types, including neurons. Together, the findings suggest that increased cholesterol and COPs after KA excitotoxicity could themselves lead to disturbed neuronal ion homeostasis, increased neurotransmitter release, and propagation of excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. MacDonald JF, Jackson MF, Beazely MA (2006) Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit Rev Neurobiol 18:71–84

    CAS  PubMed  Google Scholar 

  2. Miyamoto E (2006) Molecular mechanism of neuronal plasticity: induction and maintenance of long-term potentiation in the hippocampus. J Pharm Sci 100:433–442

    CAS  Google Scholar 

  3. Perez-Otano I, Ehlers MD (2004) Learning from NMDA receptor trafficking: clues to the development and maturation of glutamatergic synapses. Neurosignals 13:175–189

    CAS  PubMed  Google Scholar 

  4. Reid CA, Bliss TV (2000) Learning about kainate receptors. Trends Pharmacol Sci 21:159–160

    CAS  PubMed  Google Scholar 

  5. Botolotto ZA, Lauri S, Isaac JT, Collingridge GL (2003) Kainate receptors and the induction of mossy fibre long-term potentiation. Philos Trans Soc (Lond) B, Biol Soc 358:657–666

    Google Scholar 

  6. Farooqui AA, Ong WY, Horrocks LA (2008) Neurochemical aspects of excitotoxicity. Springer, New York

    Google Scholar 

  7. Wang Q, Yu S, Simonyi A, Sun GY, Sun AY (2005) Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 31:3–16

    CAS  PubMed  Google Scholar 

  8. Farooqui AA, Horrocks LA (2007) Glycerophospholipids in brain. Springer, New York

    Google Scholar 

  9. Ong WY, Lu XR, Ong BK, Horrocks LA, Farooqui AA, Lim SK (2003) Quinacrine abolishes increases in cytoplasmic phospholipase A2 mRNA levels in the rat hippocampus after kainate-induced neuronal injury. Exp Brain Res 148:521–524

    CAS  PubMed  Google Scholar 

  10. Sandhya TL, Ong WY, Horrocks LA, Farooqui AA (1998) A light and electron microcopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesion. Brain Res 788:223

    CAS  PubMed  Google Scholar 

  11. Thwin MM, Ong WY, Fong CW, Sato K, Kodama K, Farooqui AA, Gopalakrishnakone P (2003) Secretory phospholipase A2 activity in the normal and kainate injected rat brain, and inhibition by a peptide derived from python serum. Exp Brain Res 150:427–433

    CAS  PubMed  Google Scholar 

  12. Farooqui AA, Ong WY, Lu XR, Halliwell B, Horrocks LA (2001) Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res Rev 38:61–78

    CAS  PubMed  Google Scholar 

  13. Farooqui AA, Ong WY, Horrocks LA (2004) Neuroprotection abilities of cytosolic phospholipase A2 inhibitors in kainic acid-induced neurodegeneration. Curr Drug Targets Cardiovasc Haematol Disord 4:85–96

    CAS  PubMed  Google Scholar 

  14. Alexandrov P, Cui JG, Zhao Y, Lukiw WJ (2005) 24S-hydroxycholesterol induces inflammatory gene expression in primary human neural cells. NeuroReport 16:909–913

    CAS  PubMed  Google Scholar 

  15. Farooqui AA, Horrocks LA, Farooqui T (2007) Interactions between neural membrane glycerophospholipid and sphingolipid mediators: a recipe for neural cell survival or suicide. J Neurosci Res 85:1834–1850

    CAS  PubMed  Google Scholar 

  16. Trousson A, Bernard S, Petit PX, Liere P, Pianos A, El Hadri K, Lobaccaro JM, Said Ghandour M, Raymondjean M, Schumacher M, Massaad C (2009) 25-Hydroxycholesterol provokes oligodendrocyte cell line apoptosis and stimulates the secreted phospholipase A2 type IIA via LXR beta and PXR. J Neurochem 109:945–958

    CAS  PubMed  Google Scholar 

  17. Guan XL, He X, Ong WY, Yeo WK, Shui GH, Wenk MR (2006) Non-targeted profiling of lipids during kainate-induced neuronal injury. FASEB J 20:1152–1161

    CAS  PubMed  Google Scholar 

  18. He X, Guan XL, Ong WY, Farooqui AA, Wenk MR (2007) Expression, activity, and role of serine palmitoyltransferase in the rat hippocampus after kainate injury. J Neurosci Res 85:423–432

    CAS  PubMed  Google Scholar 

  19. Yu Z, Cheng G, Wen X, Wu GD, Lee WT, Pleasure D (2002) Tumor necrosis factor alpha increases neuronal vulnerability to excitotoxic necrosis by inducing expression of the AMPA-glutamate receptor subunit GluR1 via an acid sphingomyelinase- and NF-kappaB-dependent mechanism. Neurobiol Dis 11:199–213

    CAS  PubMed  Google Scholar 

  20. Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726

    CAS  PubMed  Google Scholar 

  21. Zhang J, Xue R, Ong WY, Chen P (2009) Role of cholesterol in vesicle fusion and motion. Biophys J 97:1371–1380

    CAS  PubMed  Google Scholar 

  22. Pfrieger FW (2003) Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes? Bioessays 25:72–78

    PubMed  Google Scholar 

  23. Dietschy JM, Turley SD (2004) Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 45:1375–1397

    CAS  PubMed  Google Scholar 

  24. Bjorkhem I, Lutjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J (1998) Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J Lipid Res 39:1594–1600

    CAS  PubMed  Google Scholar 

  25. DeBose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG-CoA reductase. Cell Res 18:609–621

    CAS  PubMed  Google Scholar 

  26. Brown MS, Goldstein JL (1997) The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89:331–340

    CAS  PubMed  Google Scholar 

  27. Wang Y, Muneton S, Sjövall J, Jovanovic JN, Griffiths WJ (2008) The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome. J Proteome Res 7:1606–1614

    CAS  PubMed  Google Scholar 

  28. Kojima M, Masui T, Nemoto K, Degawa M (2004) Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis. Toxicol Lett 1:35–44

    Google Scholar 

  29. Lütjohann D, Brzezinka A, Barth E, Abramowski D, Staufenbiel M, Bergmann K, Beyreuther K, Multhaup G, Bayer TA (2002) Profile of cholesterol-related sterols in aged amyloid precursor protein transgenic mouse brain. J Lipid Res 43:1078–1085

    PubMed  Google Scholar 

  30. Jurevics H, Morell P (1995) Cholesterol for synthesis of myelin is made locally, not imported into brain. J Neurochem 64:895–901

    CAS  PubMed  Google Scholar 

  31. Jurevics HA, Kidwai FZ, Morell P (1997) Sources of cholesterol during development of the rat fetus and fetal organs. J Lipid Res 38:723–733

    CAS  PubMed  Google Scholar 

  32. Thelen KM, Falkai P, Bayer TA, Lütjohann D (2006) Cholesterol synthesis rate in human hippocampus declines with aging. Neurosci Lett 403:15–19

    CAS  PubMed  Google Scholar 

  33. Levi O, Lütjohann D, Devir A, von Bergmann K, Hartmann T, Michaelson DM (2005) Regulation of hippocampal cholesterol metabolism by apoE and environmental stimulation. J Neurochem 95:987–997

    CAS  PubMed  Google Scholar 

  34. Nieweg K, Schaller H, Pfrieger FW (2009) Marked differences in cholesterol synthesis between neurons and glial cells from postnatal rats. J Neurochem 109:125–134

    CAS  PubMed  Google Scholar 

  35. Saito M, Benson EP, Rosenberg A (1987) Metabolism of cholesterol and triacylglycerol in cultured chick neuronal cells, glial cells, and fibroblasts: accumulation of esterified cholesterol in serum-free culture. J Neurosci Res 18:319–325

    CAS  PubMed  Google Scholar 

  36. Suzuki S, Kiyosue K, Hazama S, Ogura A, Kashihara M, Hara T, Koshimizu H, Kojima M (2007) Brain-derived neurotrophic factor regulates cholesterol metabolism for synapse development. J Neurosci 27:6417–6427

    CAS  PubMed  Google Scholar 

  37. Wang H, Liu F, Millette CF, Kilpatrick DL (2002) Expression of a novel, sterol-insensitive form of sterol regulatory element binding protein 2 (SREBP2) in male germ cells suggests important cell- and stage-specific functions for SREBP targets during spermatogenesis. Mol Cell Biol 22:8478–8490

    CAS  PubMed  Google Scholar 

  38. Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96:11041–11048

    CAS  PubMed  Google Scholar 

  39. Nohturfft A, Yabe D, Goldstein JL, Brown MS, Espenshade PJ (2000) Regulated step in cholesterol feedback localized to budding of SCAP from ER membranes. Cell 102:315–323

    CAS  PubMed  Google Scholar 

  40. Tarr PT, Edwards PA (2008) ABCG1 and ABCG4 are coexpressed in neurons and astrocytes of the CNS and regulate cholesterol homeostasis through SREBP-2. J Lipid Res 49:169–182

    CAS  PubMed  Google Scholar 

  41. Ong WY, Hu CY, Soh YP, Lim TM, Pentchev PG, Patel SC (2000) Neuronal localization of sterol regulatory element binding protein-1 in the rodent and primate brain: a light and electron microscopic immunocytochemical study. Neuroscience 97:143–153

    CAS  PubMed  Google Scholar 

  42. Kim JH, Ong WY (2009) Localization of the transcription factor, sterol regulatory element binding protein-2 (SREBP-2) in the normal rat brain and changes after kainate-induced excitotoxic injury. J Chem Neuroanat 37:71–77

    CAS  PubMed  Google Scholar 

  43. Korade Z, Mi Z, Portugal C, Schor NF (2007) Expression and p75 neurotrophin receptor dependence of cholesterol synthetic enzymes in adult mouse brain. Neurobiol Aging 28:1522–1531

    CAS  PubMed  Google Scholar 

  44. Recuero M, Vicente MC, Martinez-Garcia A (2009) A free radical-generating system induces the cholesterol biosynthesis pathway: a role in Alzheimer’s disease. Aging Cell 8:128–139

    CAS  PubMed  Google Scholar 

  45. Lund EG, Guileyardo JM, Russell DW (1999) cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc Natl Acad Sci USA 96:7238–7243

    CAS  PubMed  Google Scholar 

  46. Russell DW, Halford RW, Ramirez DM, Shah R, Kotti T (2009) Cholesterol 24-hydroxylase: an enzyme of cholesterol turnover in the brain. Annu Rev Biochem 78:1017–1040

    CAS  PubMed  Google Scholar 

  47. Björkhem I, Heverin M, Leoni V, Meaney S, Diczfalusy U (2006) Oxysterols and Alzheimer’s disease. Acta Neurol Scand Suppl 185:43–49

    PubMed  Google Scholar 

  48. Lutjohann D, Breuer O, Ahlborg G, Nennesmo I (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Natl Acad Sci USA 93:9799–9804

    CAS  PubMed  Google Scholar 

  49. Heverin M, Meaney S, Lütjohann D, Diczfalusy U, Wahren J, Björkhem I (2005) Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J Lipid Res 46:1047–1052

    CAS  PubMed  Google Scholar 

  50. Meaney S, Heverin M, Panzenboeck U, Ekström L, Axelsson M, Andersson U, Diczfalusy U, Pikuleva I, Wahren J, Sattler W, Björkhem I (2007) Novel route for elimination of brain oxysterols across the blood–brain barrier: conversion into 7alpha-hydroxy-3-oxo-4-cholestenoic acid. J Lipid Res 48:944–951

    CAS  PubMed  Google Scholar 

  51. Zhang J, Akwa Y, el-Etr M, Baulieu EE, Sjövall J (1997) Metabolism of 27-, 25- and 24-hydroxycholesterol in rat glial cells and neurons. Biochem J 322:175–184

    CAS  PubMed  Google Scholar 

  52. Fukumoto H, Deng A, Irizarry MC, Fitzgerald ML, Rebeck GW (2002) Induction of the cholesterol transporter ABCA1 in central nervous system cells by liver X receptor agonists increases secreted Abeta levels. J Biol Chem 277:48508–48513

    CAS  PubMed  Google Scholar 

  53. Karasinska JM, Rinninger F, Lütjohann D, Ruddle P, Franciosi S, Kruit JK, Singaraja RR, Hirsch-Reinshagen V, Fan J, Brunham LR, Bissada N, Ramakrishnan R, Wellington CL, Parks JS, Hayden MR (2009) Specific loss of brain ABCA1 increases brain cholesterol uptake and influences neuronal structure and function. J Neurosci 29:3579–3589

    CAS  PubMed  Google Scholar 

  54. Eckert GP, Vardanian L, Rebeck GW, Burns MP (2007) Regulation of central nervous system cholesterol homeostasis by the liver X receptor agonist TO-901317. Neurosci Lett 423:47–52

    CAS  PubMed  Google Scholar 

  55. Gosselet F, Candela P, Sevin E, Berezowski V, Cecchelli R, Fenart L (2009) Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood–brain barrier: use of an in vitro model. Brain Res 1249:34–42

    CAS  PubMed  Google Scholar 

  56. Vaya J, Schipper HM (2007) Oxysterols, cholesterol homeostasis, and Alzheimer disease. J Neurochem 102:1727–1737

    CAS  PubMed  Google Scholar 

  57. Strittmatter WJ, Roses AD (1996) Apolipoprotein E and Alzheimer’s disease. Ann Rev Neurosci 19:53–77

    CAS  PubMed  Google Scholar 

  58. Poirier J, Davignon J (1993) Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 342:697–699

    CAS  PubMed  Google Scholar 

  59. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    CAS  PubMed  Google Scholar 

  60. Liang Y, Lin S, Beyer TP, Zhang Y, Wu X, Bales KR, DeMattos RB, May PC, Li SD, Jiang XC, Eacho PI, Cao G, Paul SM (2004) A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J Neurochem 88:623–634

    CAS  PubMed  Google Scholar 

  61. Gong JS, Morita SY, Kobayashi M, Handa T, Fujita SC, Yanagisawa K, Michikawa M (2007) Novel action of apolipoprotein E (ApoE): ApoE isoform specifically inhibits lipid-particle-mediated cholesterol release from neurons. Mol Neurodegener 2:9

    PubMed  Google Scholar 

  62. Riddell DR, Zhou H, Atchison K, Warwick HK, Atkinson PJ, Jefferson J, Xu L, Aschmies S, Kirksey Y, Hu Y, Wagner E, Parratt A, Xu J, Li Z, Zaleska MM, Jacobsen JS, Pangalos MN, Reinhart PH (2008) Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci 28:11445–11453

    CAS  PubMed  Google Scholar 

  63. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N (2009) Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 50:l178–1182

    Google Scholar 

  64. Hirsch-Reinshagen V, Donkin J, Stukas S, Chan J, Wilkinson A, Fan J, Parks JS, Kuivenhoven JA, Lutjohann D, Pritchard H, Wellington CL (2009) LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins. J Lipid Res 50:885–893

    CAS  PubMed  Google Scholar 

  65. Infante RE, Radhakrishnan A, Abi-Mosleh L, Kinch LN, Wang ML, Grishin NV, Goldstein JL, Brown MS (2008) Purified NPC1 protein: II. Localization of sterol binding to a 240-amino acid soluble luminal loop. J Biol Chem 283:1064–1075

    CAS  PubMed  Google Scholar 

  66. Liou HL, Dixit SS, Xu S, Tint GS, Stock AM, Lobel P (2006) NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 281:36710–36723

    CAS  PubMed  Google Scholar 

  67. Patel SC, Suresh S, Kumar U, Hu CY, Cooney A, Blanchette-Mackie EJ, Neufeld EB, Patel RC, Brady RO, Patel YC, Pentchev PG, Ong WY (1999) Localization of Niemann-Pick C1 protein in astrocytes: implications for neuronal degeneration in Niemann- Pick type C disease. Proc Natl Acad Sci USA 96:1657–1662

    CAS  PubMed  Google Scholar 

  68. Hu CY, Ong WY, Patel SC (2000) Regional distribution of NPC1 protein in monkey brain. J Neurocytol 29:765–773

    CAS  PubMed  Google Scholar 

  69. Ong WY, Sundaram RK, Huang E, Ghoshal S, Kumar U, Pentchev PG, Patel SC (2004) Neuronal localization and association of Niemann Pick C2 protein (HE1/NPC2) with the postsynaptic density. Neuroscience 128:561–570

    CAS  PubMed  Google Scholar 

  70. Tang Y, Li H, Liu JP (2010) Niemann-Pick disease type C: from molecule to clinic. Clin Exp Pharmacol Physiol (in press)

  71. Walkley SU, Suzuki K (2004) Consequences of NPC1 and NPC2 loss of function in mammalian neurons. Biochim Biophys Acta 1685:48–62

    CAS  PubMed  Google Scholar 

  72. Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405

    CAS  PubMed  Google Scholar 

  73. Ong WY, Goh EW, Lu XR, Farooqui AA, Patel SC, Halliwell B (2003) Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainate-induced neuronal injury. Brain Pathol 13:250–262

    CAS  PubMed  Google Scholar 

  74. Kim JH, Jittiwat J, Ong WY, Farooqui AA, Jenner AM (2010) Changes in cholesterol biosynthetic and transport pathways after excitotoxicity. J Neurochem 112:34–41

    Google Scholar 

  75. Chang TY, Chang CC, Ohgami N, Yamauchi Y (2006) Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22:129–157

    CAS  PubMed  Google Scholar 

  76. Iuliano L, Micheletta F, Natoli S, Ginanni Corradini S, Iappelli M, Elisei W, Giovannelli L, Violi F, Diczfalusy U (2003) Measurement of oxysterols and alpha-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem 312:217–223

    CAS  PubMed  Google Scholar 

  77. Lee CY, Huang SH, Jenner AM, Halliwell B (2008) Measurement of F2-isoprostanes, hydroxyeicosatetraenoic products, and oxysterols from a single plasma sample. Free Radic Biol Med 44:1314–1322

    CAS  PubMed  Google Scholar 

  78. Leoni V, Lütjohann D, Masterman T (2005) Levels of 7-oxocholesterol in cerebrospinal fluid are more than one thousand times lower than reported in multiple sclerosis. J Lipid Res 46:191–195

    CAS  PubMed  Google Scholar 

  79. Jenner AM, Ren M, Rajendran R, Ning P, Huat BT, Watt F, Halliwell B (2007) Zinc supplementation inhibits lipid peroxidation and the development of atherosclerosis in rabbits fed a high cholesterol diet. Free Radic Biol Med 42:559–566

    CAS  PubMed  Google Scholar 

  80. Lu XR, Ong WY, Halliwell B, Horrocks LA, Farooqui AA (2001) Differential effects of calcium-dependent and calcium-independent phospholipase A2 inhibitors on kainate-induced neuronal injury in rat hippocampal slices. Free Radic Biol Med 30:1263–1273

    CAS  PubMed  Google Scholar 

  81. He X, Jenner AM, Ong WY, Farooqui AA, Patel SC (2006) Lovastatin modulates increased cholesterol and oxysterol levels and has a neuroprotective effect on rat hippocampal neurons after kainate injury. J Neuropathol Exp Neurol 65:652–663

    CAS  PubMed  Google Scholar 

  82. Cartagena CM, Ahmed F, Burns MP, Pajoohesh-Ganji A, Pak DT, Faden AI, Rebeck GW (2008) Cortical injury increases cholesterol 24S hydroxylase (Cyp46) levels in the rat brain. J Neurotrauma 25:1087–1098

    PubMed  Google Scholar 

  83. Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, Bloks VW, Bakker AH, Ramaekers FC, de Vente J, Groen AK, Wellington CL, Kuipers F, Mulder M (2006) 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J Biol Chem 281:12799–12808

    CAS  PubMed  Google Scholar 

  84. Ryan L, O’Callaghan YC, O’Brien NM (2004) Comparison of the apoptotic processes induced by the oxysterols 7beta-hydroxycholesterol and cholesterol-5beta, 6beta-epoxide. Cell Biol Toxicol 20:313–323

    CAS  PubMed  Google Scholar 

  85. Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R (2000) Apolipoprotein D. Biochim Biophys Acta 1482:185–198

    CAS  PubMed  Google Scholar 

  86. Ong WY, He Y, Suresh S, Patel SC (1997) Differential expression of apolipoprotein D and apolipoprotein E in the kainic acid-lesioned rat hippocampus. Neuroscience 79:359–367

    CAS  PubMed  Google Scholar 

  87. Rickhag M, Deierborg T, Patel S, Ruscher K, Wieloch T (2008) Apolipoprotein D is elevated in oligodendrocytes in the peri-infarct region after experimental stroke: influence of enriched environment. J Cereb Blood Flow Metab 28:551–562

    CAS  PubMed  Google Scholar 

  88. He X, Jittiwat J, Kim JH, Jenner AM, Farooqui AA, Patel SC, Ong WY (2009) Apolipoprotein D modulates F2-isoprostane and 7-ketocholesterol formation and has a neuroprotective effect on organotypic hippocampal cultures after kainate-induced excitotoxic injury. Neurosci Lett 455:183–186

    CAS  PubMed  Google Scholar 

  89. Walker DW, Muffat J, Rundel C, Benzer S (2006) Overexpression of a Drosophila homolog of apolipoprotein D leads to increased stress resistance and extended lifespan. Curr Biol 16:674–679

    CAS  PubMed  Google Scholar 

  90. Sanchez D, Lopez-Arias B, Torroja L, Canal I, Wang X, Bastiani MJ, Ganfornina MD (2006) Loss of glial lazarillo, a homolog of apolipoprotein D, reduces lifespan and stress resistance in Drosophila. Curr Biol 16:680–686

    CAS  PubMed  Google Scholar 

  91. Muffat J, Walker DJ, Benzer S (2008) Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila. Proc Natl Acad Sci USA 105:7088–7093

    CAS  PubMed  Google Scholar 

  92. Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, González C, Bastiani MJ, Rassart E, Sanchez D (2008) Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell 7:506–515

    CAS  PubMed  Google Scholar 

  93. Kohchi C, Ukena K, Tsutsui K (1998) Age- and region-specific expressions of the messenger RNAs encoding for steroidogenic enzymes p450scc, P450c17 and 3beta-HSD in the postnatal rat brain. Brain Res 801:233–238

    CAS  PubMed  Google Scholar 

  94. Chia WJ, Jenner AM, Farooqui AA, Ong WY (2008) Changes in cytochrome P450 side chain cleavage expression in the rat hippocampus after kainate injury. Exp Brain Res 186:143–149

    CAS  PubMed  Google Scholar 

  95. Biagini G, Longo D, Baldelli E, Zoli M, Rogawski MA, Bertazzoni G, Avoli M (2009) Neurosteroids and epileptogenesis in the pilocarpine model: evidence for a relationship between P450scc induction and length of the latent period. Epilepsia 50(Suppl 1):53–58

    CAS  PubMed  Google Scholar 

  96. Igbavboa U, Avdulov NA, Chochina SV, Wood WG (1997) Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in the low-density lipoprotein receptor, apolipoprotein E, or both proteins. J Neurochem 69:1661–1667

    Article  CAS  PubMed  Google Scholar 

  97. Stefani M, Liguri G (2009) Cholesterol in Alzheimer’s disease: unresolved questions. Curr Alzheimer Res 6:15–29

    CAS  PubMed  Google Scholar 

  98. Mishra S, Joshi PG (2007) Lipid raft heterogeneity: an enigma. J Neurochem 103(suppl 1):135–142

    CAS  PubMed  Google Scholar 

  99. Guirland C, Zheng JQ (2007) Membrane lipid rafts and their role in axon guidance. Adv Exp Med Biol 621:144–155

    PubMed  Google Scholar 

  100. Koyrakh L, Luján R, Colón J, Karschin C, Kurachi Y, Karschin A, Wickman K (2005) Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J Neurosci 25:11468–11478

    CAS  PubMed  Google Scholar 

  101. Chang J, Kim SA, Lu X, Su Z, Kim SK, Shin YK (2009) Fusion step-specific influence of cholesterol on SNARE-mediated membrane fusion. Biophys J 96:1839–1846

    CAS  PubMed  Google Scholar 

  102. Frank C, Rufini S, Tancredi V, Forcina R, Grossi D, D’Arcangelo G (2008) Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp Neurol 212:407–414

    CAS  PubMed  Google Scholar 

  103. Han JH, Kim YJ, Han ES, Lee CS (2007) Prevention of 7-ketocholesterol-induced mitochondrial damage and cell death by calmodulin inhibition. Brain Res 1137:11–19

    CAS  PubMed  Google Scholar 

  104. Luthra S, Dong J, Gramajo AL, Chwa M, Kim DW, Neekhra A, Kuppermann BD, Kenney MC (2008) 7-Ketocholesterol activates caspases-3/7, -8, and -12 in human microvascular endothelial cells in vitro. Microvasc Res 75:343–350

    CAS  PubMed  Google Scholar 

  105. Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Berthier A, Bessede G, Corcos L, Gambert P, Neel D, Lizard G (2005) Comparison of the cytotoxic, pro-oxidant and pro-inflammatory characteristics of different oxysterols. Cell Biol Toxicol 21:97–114

    CAS  PubMed  Google Scholar 

  106. Ryan L, O’Callaghan YC, O’Brien NM (2006) Involvement of calcium in 7beta -hydroxycholesterol and cholesterol-5beta, 6beta -epoxide-induced apoptosis. Int J Toxicol 25:35–39

    CAS  PubMed  Google Scholar 

  107. Berthier A, Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Pais de Barros JP, Monier S, Gambert P, Lizard G, Neel D (2005) 7-Ketocholesterol-induced apoptosis. Involvement of several pro-apoptotic but also anti-apoptotic calcium-dependent transduction pathways. FEBS J 272:3093–3104

    CAS  PubMed  Google Scholar 

  108. Lizard G, Miguet C, Bessede G, Monier S, Gueldry S, Neel D, Gambert P (2000) Impairment with various antioxidants of the loss of mitochondrial transmembrane potential and of the cytosolic release of cytochrome c occuring during 7-ketocholesterol-induced apoptosis. Free Radic Biol Med 28:743–753

    CAS  PubMed  Google Scholar 

  109. Massey JB (2006) Membrane and protein interactions of oxysterols. Curr Opin Lipidol 17:296–301

    CAS  PubMed  Google Scholar 

  110. Risé P, Camera M, Caruso D, Ghezzi S, Visioli F, Galli C (2004) Synthesis of long-chain polyunsaturated fatty acids is inhibited in vivo in hypercholesterolemic rabbits and in vitro by oxysterols. Prostaglandins Leukot Essent Fatty Acids 71:79–86

    PubMed  Google Scholar 

  111. Cutler RG, Kelly J, Storie K, Pedersen WA, Tammara A, Hatanpaa K, Troncoso JC, Mattson MP (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070–2075

    CAS  PubMed  Google Scholar 

  112. Brown J 3rd, Theisler C, Silberman S, Magnuson D, Gpttardi-Littell N, Lee JM, Yager D, Crowley J, Sambamurti K, Rahman MM, Reiss AB, Eckman CB, Wolozin B (2004) Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem 279:34674–34681

    CAS  PubMed  Google Scholar 

  113. Morello F, Saglio E, Noghero A, Schiavone D, Williams TA, Verhovez A, Bussolino F, Veglio F, Mulatero P (2009) LXR-activating oxysterols induce the expression of inflammatory markers in endothelial cells through LXR-independent mechanisms. Atherosclerosis 207:38–44

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Medical Research Council of Singapore (NMRC/EDG/0012/2007 and NMRC/EDG/0060/2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Yi Ong or Andrew M. Jenner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ong, WY., Kim, JH., He, X. et al. Changes in Brain Cholesterol Metabolome After Excitotoxicity. Mol Neurobiol 41, 299–313 (2010). https://doi.org/10.1007/s12035-010-8099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8099-3

Keywords

Navigation