Skip to main content
Log in

Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Major depressive disorder (MDD) is a heritable neuropsychiatric disease associated with severe changes at cellular and molecular levels. Its diagnosis mainly relies on the characterization of a wide range of symptoms including changes in mood and behavior. Despite the availability of antidepressant drugs, 10 to 30 % of patients fail to respond after a single or multiple treatments, and the recurrence of depression among responsive patients is very high. Evidence from the past decades suggests that the brain neurotransmitter serotonin (5-HT) is incriminated in MDD, and that a dysfunction of 5-HT receptors may play a role in the genesis of this disease. The 5-HT membrane transporter protein (SERT), which helps regulate the serotonergic transmission, is also implicated in MDD and is one of the main targets of antidepressant therapy. Although a number of behavioral tests and animal models have been developed to study depression, little is known about the neurobiological bases of MDD. Understanding the role of the serotonergic pathway will significantly help improve our knowledge of the pathophysiology of depression and may open up avenues for the development of new antidepressant drugs. The overarching goal of this review is to present recent findings from studies examining the serotonergic pathway in MDD, with a focus on SERT and the serotonin 1A (5-HT1A), serotonin 1B (5-HT1B), and serotonin 2A (5-HT2A) receptors. This paper also describes some of the main molecules involved in the internalization of 5-HT receptors and illustrates the changes in 5-HT neurotransmission in knockout mice and animal model of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pae CU, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS et al (2014) Vortioxetine: a meta-analysis of 12 short-term, randomized, placebo-controlled clinical trials for the treatment of major depressive disorder. J Psychiatry Neurosci 39:140120

    Google Scholar 

  2. Fakhoury M (2015) New insights into the neurobiological mechanisms of major depressive disorders. GenHosp Psychiatry 37:172–177

  3. Kenneson A, Funderburk JS, Maisto SA (2013) Substance use disorders increase the odds of subsequent mood disorders. Drug Alcohol Depend 133:338–343

    Article  PubMed  Google Scholar 

  4. AmericanPsychiatric Association (2003) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Press, Washington, DC

    Google Scholar 

  5. Saveanu RV, Nemeroff CB (2012) Etiology of depression: genetic and environmental factors. Psychiatr Clin N Am 35:51–71

    Article  Google Scholar 

  6. Domínguez-López S, Howell R, Gobbi G (2012) Characterization of serotonin neurotransmission in knockout mice: implications for major depression. Rev Neurosci 23:429–443

    Article  PubMed  Google Scholar 

  7. Meyer JH (2007) Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci 32:86–102

    PubMed  PubMed Central  Google Scholar 

  8. Hoffman BJ, Mezey E, Brownstein MJ (1991) Cloning of a serotonin transporter affected by antidepressants. Science 254:579–580

    Article  CAS  PubMed  Google Scholar 

  9. Carr GV, Lucki I (2011) The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl) 213:265–287

    Article  CAS  Google Scholar 

  10. Savitz J, Lucki I, Drevets WC (2009) 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88:17–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stamford JA, Davidson C, McLaughlin DP, Hopwood SE (2000) Control of dorsal raphé 5-HT function by multiple 5-HT(1) autoreceptors: parallel purposes or pointless plurality? Trends Neurosci 23:459–465

    Article  CAS  PubMed  Google Scholar 

  12. Kasamo K, Suzuki T, Tada K, Ueda N, Matsuda E, Ishikawa K et al (2001) Endogenous 5-HT tonically inhibits spontaneous firing activity of dorsal hippocampus CA1 pyramidal neurons through stimulation of 5-HT(1A) receptors in quiet awake rats: in vivo electrophysiological evidence. Neuropsychopharmacology 24:141–151

    Article  CAS  PubMed  Google Scholar 

  13. Anthony JP, Sexton TJ, Neumaier JF (2000) Antidepressant-induced regulation of 5-HT(1b) mRNA in rat dorsal raphe nucleus reverses rapidly after drug discontinuation. J Neurosci Res 61:82–87

    Article  CAS  PubMed  Google Scholar 

  14. Celada P, Puig M, Amargós-Bosch M, Adell A, Artigas F (2004) The therapeutic role of 5-HT1A and 5-HT2A receptors in depression. J Psychiatry Neurosci 29:252–265

    PubMed  PubMed Central  Google Scholar 

  15. Albert PR, Benkelfat C (2013) The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Philos Trans R Soc Lond B Biol Sci 368:20120535

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maurer-Spurej E, Pittendreigh C, Misri S (2007) Platelet serotonin levels support depression scores for women with postpartum depression. J Psychiatry Neurosci 32:23–29

    PubMed  PubMed Central  Google Scholar 

  17. Ogawa S, Fujii T, Koga N, Hori H, Teraishi T, Hattori K et al (2014) Plasma L-tryptophan concentration in major depressive disorder: new data and meta-analysis. J Clin Psychiatry 75:e906–e915

    Article  CAS  PubMed  Google Scholar 

  18. Booij L, Van der Does W, Benkelfat C, Bremner JD, Cowen PJ, Fava M et al (2002) Predictors of mood response to acute tryptophan depletion. A reanalysis. Neuropsychopharmacology 27:852–861

    Article  CAS  PubMed  Google Scholar 

  19. El Mansari M, Guiard BP, Chernoloz O, Ghanbari R, Katz N et al (2010) Relevance of norepinephrine-dopamine interactions in the treatment of major depressive disorder. CNS Neurosci Ther 16:e1–e17

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in psychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102

    Article  CAS  PubMed  Google Scholar 

  21. Marazziti D, Golia F, Consoli G, Presta S, Pfanner C, Carlini M et al (2008) Effectiveness of long-term augmentation with citalopram to clomipramine in treatment-resistant OCD patients. CNS Spectr 13:971–976

    Article  PubMed  Google Scholar 

  22. Emslie GJ, Heiligenstein JH, Wagner KD, Hoog SL, Ernest DE, Brown E et al (2002) Fluoxetine for acute treatment of depression in children and adolescents: a placebo-controlled, randomized clinical trial. J Am Acad Child Adolesc Psychiatry 41:1205–1215

    Article  PubMed  Google Scholar 

  23. Muijsers RB, Plosker GL, Noble S (2002) Spotlight on sertraline in the management of major depressive disorder in elderly patients. CNS Drugs 16:789–794

    Article  PubMed  Google Scholar 

  24. Montañez S, Daws LC, Gould GG, Frazer A (2003) Serotonin (5-HT) transporter (SERT) function after graded destruction of serotonergic neurons. J Neurochem 87:861–867

    Article  PubMed  Google Scholar 

  25. Schloss P, Williams DC (1998) The serotonin transporter: a primary target for antidepressant drugs. J Psychopharmacol 12:115–121

    Article  CAS  PubMed  Google Scholar 

  26. Lesch KP, Wolozin BL, Murphy DL, Riederer P (1993) Isolation of a cDNA encoding the human brain serotonin transporter. J Neurochem 60:2319–2322

    Article  CAS  PubMed  Google Scholar 

  27. Ramamoorthy S, Bauman AL, Moore KR, Han H, Yang-Feng T, Chang AS et al (1993) Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA 90:2542–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, El Mestikawy S et al (1996) Transient uptake ans storage of serotonin in developing thalamic neurons. Neuron 17:823–835

    Article  CAS  PubMed  Google Scholar 

  29. Hansson SR, Mezey É, Hoffman BJ (1998) Serotonin transporter messenger RNA in the developing rat brain: early expression in serotonergic neurons and transient expression in non-serotonergic neurons. Neuroscience 83:1185–1201

    Article  CAS  PubMed  Google Scholar 

  30. Austin MC, Bradley CC, Mann JJ, Blakely RD (1994) Expression of serotonin transporter messenger mRNA in the human brain. J Neurochem 62:2362–2367

    Article  CAS  PubMed  Google Scholar 

  31. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  CAS  PubMed  Google Scholar 

  32. Eley TC, Sugden K, Corsico A, Gregory AM, Sham P, McGuffin P et al (2004) Gene-environment interaction analysis of serotonin system markers with adolescent depression. Mol Psychiatry 9:908–915

    Article  CAS  PubMed  Google Scholar 

  33. Oya S, Choi SR, Hou C, Mu M, Kung MP, Acton PD et al (2000) 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand. Nucl Med Biol 27:249–254

    Article  CAS  PubMed  Google Scholar 

  34. Holley A, Simonson B, Kivell BM (2013) MDMA regulates serotonin transporter function via a Protein kinase C dependent mechanism. J Addict Prev 1:5

    Google Scholar 

  35. Zhou Z, Zhen J, Karpowich NK, Law CJ, Reith ME, Wang DN (2009) Antidepressant specificity of serotonin transporter suggested by three LeuT-SSRI structures. Nat Struct Mol Biol 16:652–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haase J, Killian AM, Magnani F, Williams C (2001) Regulation of the serotonin transporter by interacting proteins. Biochem Soc Trans 29:722–728

    Article  CAS  PubMed  Google Scholar 

  37. Lau T, Horschitz S, Berger S, Bartsch D, Schloss P (2008) Antidepressant-induced internalization of the serotonin transporter in serotonergic neurons. FASEB J 22:1702–1714

    Article  CAS  PubMed  Google Scholar 

  38. Raymond JR, Mukhin YV, Gettys TW, Garnovskaya MN (1999) The recombinant 5-HT1A receptor: G protein coupling and signalling pathways. Br J Pharmacol 127:1751–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X et al (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417:181–194

    Article  CAS  PubMed  Google Scholar 

  40. Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J et al (2000) Differential adaptation of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology 39:110–122

    Article  PubMed  Google Scholar 

  41. Riad M, Watkins KC, Doucet E, Hamon M, Descarries L (2001) Agonist-induced internalization of serotonin-1A receptors in the dorsal raphe nucleus (autoreceptors) but not hippocampus (heteroreceptors). J Neurosci 21:8378–8386

    CAS  PubMed  Google Scholar 

  42. Hesselgrave N, Parsey RV (2013) Imaging the serotonin 1A receptor using [11C]WAY100635 in healthy controls and major depression. Philos Trans R Soc Lond B Biol Sci 368:20120004

    Article  PubMed  PubMed Central  Google Scholar 

  43. Toth M (2003) 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur J Pharmacol 463:177–184

    Article  CAS  PubMed  Google Scholar 

  44. Dekeyne A, Rivet JM, Gobert A, Millan MJ (2001) Generalization of serotonin (5-HT)1A agonists and the antipsychotics, clozapine, ziprasidone and S16924, but not haloperidol, to the discriminative stimuli elicited by PD128,907 and 7-OH-DPAT. Neuropharmacology 40:899–910

    Article  CAS  PubMed  Google Scholar 

  45. Riad M, Zimmer L, Rbah L, Watkins KC, Hamon M, Descarries L (2004) Acute treatment with the antidepressant fluoxetine internalizes 5-HT1A autoreceptors and reduces the in vivo binding of the PET radioligand [18F]MPPF in the nucleus raphe dorsalis of rat. J Neurosci 24:5420–5426

    Article  CAS  PubMed  Google Scholar 

  46. Baune BT, Hohoff C, Roehrs T, Deckert J, Arolt V, Domschke K (2008) Serotonin receptor 1A–1019C/G variant: impact on antidepressant pharmacoresponse in melancholic depression? Neurosci Lett 436:111–115

    Article  CAS  PubMed  Google Scholar 

  47. Eriksson TM, Alvarsson A, Stan TL, Zhang X, Hascup KN, Hascup ER et al (2013) Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Mol Psychiatry 18:1096–1105

    Article  CAS  PubMed  Google Scholar 

  48. Ruf BM, Bhagwagar Z (2009) The 5-HT1B receptor: a novel target for the pathophysiology of depression. Curr Drug Targets 10:1118–1138

    Article  CAS  PubMed  Google Scholar 

  49. Hamblin MW, Metcalf MA, McGuffin RW, Karpells S (1992) Molecular cloning and functional characterization of a human 5-HT1B serotonin receptor: a homologue of the rat 5-HT1B receptor with 5-HT1D-like pharmacological specificity. Biochem Biophys Res Commun 184:752–759

    Article  CAS  PubMed  Google Scholar 

  50. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R (1992) Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci U S A 89:3020–3304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Voigt MM, Laurie DJ, Seeburg PH, Bach A (1991) Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J 10:4017–4023

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Morikawa H, Manzoni OJ, Crabbe JC, Williams JT (2000) Regulation of central synaptic transmission by 5-HT(1B) auto- and heteroreceptors. Mol Pharmacol 58:1271–1278

    CAS  PubMed  Google Scholar 

  53. Clark MS, Neumaier JF (2001) The 5-HT1B receptor: behavioral implications. Psychopharmacol Bull 35:170–185

    CAS  PubMed  Google Scholar 

  54. Tatarczyńska E, Kłodzińska A, Stachowicz K, Chojnacka-Wójcik E (2004) Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav Pharmacol 15:523–534

    Article  PubMed  Google Scholar 

  55. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    Article  CAS  PubMed  Google Scholar 

  56. Yeung LY, Kung HF, Yew DT (2010) Localization of 5-HT1A and 5-HT2A positive cells in the brainstems of control age-matched and Alzheimer individuals. Age (Dordr) 32:483–495

    Article  CAS  Google Scholar 

  57. Meyer JH, McMain S, Kennedy SH, Korman L, Brown GM, DaSilva JN et al (2003) Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am J Psychiatry 160:90–99

    Article  PubMed  Google Scholar 

  58. Shelton RC, Sanders-Bush E, Manier DH, Lewis DA (2009) Elevated 5-HT 2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase A. Neuroscience 158:1406–1415

    Article  CAS  PubMed  Google Scholar 

  59. Pullar IA, Carney SL, Colvin EM, Lucaites VL, Nelson DL, Wedley S (2000) LY367265, an inhibitor of the 5-hydroxytryptamine transporter and 5-hydroxytryptamine(2A) receptor antagonist: a comparison with the antidepressant, nefazodone. Eur J Pharmacol 407:39–46

    Article  CAS  PubMed  Google Scholar 

  60. Kettle CJ, Cheetham SC, Martin KF, Prow MR, Heal DJ (1999) The effects of the peptide-coupling agent, EEDQ, on 5-HT2A receptor binding and function in rat frontal cortex. Neuropharmacology 38:1421–1430

    Article  CAS  PubMed  Google Scholar 

  61. Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS (2006) Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology 31:265–277

    Article  CAS  PubMed  Google Scholar 

  62. Ohkura M, Tanaka N, Kobayashi H, Wada A, Nakai J, Yamamoto R (2005) Insulin induces internalization of the 5-HT2A receptor expressed in HEK293 cells. Eur J Pharmacol 518:18–21

    Article  CAS  PubMed  Google Scholar 

  63. Roth BL, Palvimaki EP, Berry S, Khan N, Sachs N, Uluer A et al (1995) 5-Hydroxytryptamine2A (5-HT2A) receptor desensitization can occur without down-regulation. J Pharmacol Exp Ther 275:1638–1646

    CAS  PubMed  Google Scholar 

  64. Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  CAS  PubMed  Google Scholar 

  65. Zheng H, Loh HH, Law PY (2008) Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) translocate to nucleus in contrast to G protein-dependent ERK activation. Mol Pharmacol 73:178–190

    Article  CAS  PubMed  Google Scholar 

  66. Foreman JC, Johansen T, Gibb AJ (2010) Textbook of receptor pharmacology, 3rd edn. CRC, Boca Raton

    Google Scholar 

  67. Premont RT, Gainetdinov RR (2007) Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534

    Article  CAS  PubMed  Google Scholar 

  68. Ferguson SSG, Downey WER, Colapietro AM, Barak LS, Menard L, Caron MG (1996) Role of β-arrestins in mediating agonist-promoted G protein-coupled receptor internalization. Science 271:363–366

    Article  CAS  PubMed  Google Scholar 

  69. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SSG, Caron MG et al (1999) The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A 96:3712–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grange-Midroit M, García-Sevilla JA, Ferrer-Alcón M, La Harpe R, Walzer C, Guimón J (2002) G protein-coupled receptor kinases, β-arrestin-2 and associated regulatory proteins in the human brain: postmortem changes, effect of age and subcellular distribution. Mol Brain Res 101:39–51

    Article  CAS  PubMed  Google Scholar 

  71. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210

    Article  CAS  PubMed  Google Scholar 

  72. Avissar S, Matuzany-Ruban A, Tzukert K, Schreiber G (2004) Beta-arrestin-1 levels: reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. Am J Psychiatry 161:2066–2072

    Article  PubMed  Google Scholar 

  73. Matuzany-Ruban A, Avissar S, Schreiber G (2005) Dynamics of beta-arrestin1 protein and mRNA levels elevation by antidepressants in mononuclear leukocytes of patients with depression. J Affect Disord 88:307–312

    Article  CAS  PubMed  Google Scholar 

  74. David DJ, Samuels BA, Rainer Q, Wang J-W, Marsteller D, Mendez I et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haenisch B, Bonisch H (2011) Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol Ther 129:352–368

    Article  CAS  PubMed  Google Scholar 

  76. Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    Article  PubMed  Google Scholar 

  77. Romeas T, Morissette MC, Mnie-Filali O, Piñeyro G, Boye SM (2009) Simultaneous anhedonia and exaggerated locomotor activation in an animal model of depression. Psychopharmacology (Berl) 205:293–303

    Article  CAS  Google Scholar 

  78. Harkin A, Kelly JP, Leonard BE (2003) A review of the relevance and validity of olfactory bulbectomy as a model of depression. Clin Neurosci Res 3:253–262

    Article  Google Scholar 

  79. Watanabe A, Tohyama Y, Nguyen KQ, Hasegawa S, Debonnel G, Diksic M (2003) Regional brain serotonin synthesis is increased in the olfactory bulbectomy rat model of depression: an autoradiographic study. J Neurochem 85:469–475

    Article  CAS  PubMed  Google Scholar 

  80. Slotkin TA, Cousins MM, Tate CA, Seidler FJ (2005) Serotonergic cell signaling in an animal model of aging and depression: olfactory bulbectomy elicits different adaptations in brain regions of young adult vs aging rats. Neuropsychopharmacology 30:52–57

    Article  PubMed  Google Scholar 

  81. Yalcin I, Belzung C, Surget A (2008) Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behav Brain Res 193:140–143

    Article  CAS  PubMed  Google Scholar 

  82. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liang BF, Huang F, Wang HT, Wang GH, Yuan X, Zhang MZ et al (2014) Involvement of norepinephrine and serotonin system in antidepressant-like effects of hederagenin in the rat model of unpredictable chronic mild stress-induced depression. Pharm Biol 4:1–10

    CAS  Google Scholar 

  84. Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P (2005) Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 16:70–78

    Article  CAS  PubMed  Google Scholar 

  85. Dwivedi Y, Mondal AC, Payappagoudar GV, Rizavi HS (2005) Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology 48:204–214

    Article  CAS  PubMed  Google Scholar 

  86. Jiang X, Xing G, Yang C, Verma A, Zhang L, Li H (2009) Stress impairs 5-HT2A receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 34:410–423

    Article  CAS  PubMed  Google Scholar 

  87. Venzala E, García-García AL, Elizalde N, Delagrange P, Tordera RM (2012) Chronic social defeat stress model: behavioral features, antidepressant action, and interaction with biological risk factors. Psychopharmacology (Berl) 224:313–325

    Article  CAS  Google Scholar 

  88. Zhang J, Fan Y, Li Y, Zhu H, Wang L, Zhu MY (2012) Chronic social defeat up-regulates expression of the serotonin transporter in rat dorsal raphe nucleus and projection regions in a glucocorticoid-dependent manner. J Neurochem 123:1054–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kalueff AV, Jensen CL, Murphy DL (2007) Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res 1169:87–97

    Article  CAS  PubMed  Google Scholar 

  90. Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP et al (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12:2299–2310

    Article  CAS  PubMed  Google Scholar 

  91. Li Q, Wichems CH, Ma L, Van de Kar LD, Garcia F, Murphy DL (2003) Brain region-specific alterations of 5-HT2A and 5-HT2C receptors in serotonin transporter knockout mice. J Neurochem 84:1256–1265

    Article  CAS  PubMed  Google Scholar 

  92. Gobbi G, Murphy DL, Lesch K, Blier P (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296:987–995

    CAS  PubMed  Google Scholar 

  93. Pattij T, Groenink L, Hijzen TH, Oosting RS, Maes RA, van der Gugten J et al (2002) Autonomic changes associated with enhanced anxiety in 5-HT(1A) receptor knockout mice. Neuropsychopharmacology 27:380–390

    Article  CAS  PubMed  Google Scholar 

  94. Janusonis S, Anderson GM, Shifrovich I, Rakic P (2006) Ontogeny of brain and blood serotonin levels in 5-HT receptor knockout mice: potential relevance to the neurobiology of autism. J Neurochem 99:1019–1031

    Article  CAS  PubMed  Google Scholar 

  95. Ase AR, Reader TA, Hen R, Riad M, Descarries L (2000) Altered serotonin and dopamine metabolism in the CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor knockout mice. J Neurochem 75:2415–2426

    Article  CAS  PubMed  Google Scholar 

  96. Richardson-Jones JW, Craige CP, Nguyen TH, Kung HF, Gardier AM, Dranovsky A et al (2011) Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J Neurosci 31:6008–6018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Adrien J (2004) Implication of serotonin in the control of vigilance states as revealed by knockout-mouse studies. J Soc Biol 198:30–36

    Article  CAS  PubMed  Google Scholar 

  98. Popa D, Léna C, Fabre V, Prenat C, Gingrich J, Escourrou P et al (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25:11231–11238

    Article  CAS  PubMed  Google Scholar 

  99. Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA et al (2009) 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 34:1958–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author is recipient of an award from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Conflict of Interest

The author declares that the present manuscript presents no conflict of interest.

Compliance with Ethical Standards

For this type of study, formal consent is not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Fakhoury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhoury, M. Revisiting the Serotonin Hypothesis: Implications for Major Depressive Disorders. Mol Neurobiol 53, 2778–2786 (2016). https://doi.org/10.1007/s12035-015-9152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9152-z

Keywords

Navigation