Skip to main content
Log in

Tanshinone I Induces Mitochondrial Protection through an Nrf2-Dependent Mechanism in Paraquat-TreatedHuman Neuroblastoma SH-SY5Y Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tanshinone I (T-I; 1,6-Dimethylnaphtho[1,2-g][1]benzofuran-10,11-dione; C18H12O3), which may be found in Salvia miltiorrhiza Bunge (Danshen), is a potent anti-inflammatory, antioxidant, and anti-cancer agent. At least in part, T-I exerts antioxidant activity by activating signaling pathways associated with the maintenance of the redox state in mammalian cells. In this context, the upregulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has received attention regarding the role of this transcription factor in modulating the expression of antioxidant enzymes and the metabolism of glutathione (GSH). Even though there is a growing body of evidence suggesting that T-I mediates protection against several pro-oxidant challenges in both in vitro and in vivo experimental models, it remains to be examined whether and how T-I would modulate mitochondrial function during redox disturbances. Therefore, we aimed to reveal whether T-I would exhibit protective effects on mitochondria of SH-SY5Y cells treated with paraquat (PQ), a well-known mitochondrial toxic agent. We found that T-I pretreatment significantly protected mitochondria against PQ-induced redox impairment through an Nrf2-dependent mechanism involving upregulation of antioxidant enzymes, such as Mn-superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx), and both catalytic and modifier subunits of γ-glutamate-cysteine ligase (γ-GCL). T-I prevented complex I and mitochondrial membrane potential (MMP) impairments elicited by PQ. Thus, T-I may be viewed as a new mitochondrial protective agent whose complete mechanism of action needs to be investigated, but it seems to involve mitochondriotropic aspects related to the chemistry of this molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tian XH, Wu JH (2013) Tanshinone derivatives: a patent review (January 2006-September 2012). Expert Opin Ther Pat 23:19–29. doi:10.1517/13543776.2013.736494

    Article  CAS  PubMed  Google Scholar 

  2. Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J (2013) Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci 4:1004–1015. doi:10.1021/cn400051e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ji K, Zhao Y, Yu T, Wang Z, Gong H, Yang X, Liu Y, Huang K (2016) Inhibition effects of tanshinone on the aggregation of α-synuclein. Food Funct 7:409–416. doi:10.1039/c5fo00664c

    Article  CAS  PubMed  Google Scholar 

  4. Kim DH, Jeon SJ, Jung JW, Lee S, Yoon BH, Shin BY, Son KH, Cheong JH, Kim YS, Kang SS, Ko KH, Ryu JH (2007) Tanshinone congeners improve memory impairments induced by scopolamine on passive avoidance tasks in mice. Eur J Pharmacol 574:140–147. doi:10.1016/j.ejphar.2007.07.042

    Article  CAS  PubMed  Google Scholar 

  5. Park OK, Choi JH, Park JH, Kim IH, Yan BC, Ahn JH, Kwon SH, Lee JC, Kim YS, Kim M, Kang IJ, Kim JD, Lee YL, Won MH (2012) Comparison of neuroprotective effects of five major lipophilic diterpenoids from Danshen extract against experimentally induced transient cerebral ischemic damage. Fitoterapia 83:1666–1674. doi:10.1016/j.fitote.2012.09.020

    Article  CAS  PubMed  Google Scholar 

  6. Jing X, Wei X, Ren M, Wang L, Zhang X, Lou H (2015) Neuroprotective effects of tanshinone I against 6-OHDA-induced oxidative stress in cellular and mouse model of Parkinson’s disease through upregulating Nrf2. Neurochem Res. doi:10.1007/s11064-015-1751-6

    Google Scholar 

  7. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  CAS  PubMed  Google Scholar 

  8. Nicholls DG, Budd SL (1998) Neuronal excitotoxicity: the role of mitochondria. Biofactors 8:287–299

    Article  CAS  PubMed  Google Scholar 

  9. Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93

    Article  CAS  PubMed  Google Scholar 

  10. Grivennikova VG, Vinogradov AD (2006) Generation of superoxide by the mitochondrial complex I. Biochim Biophys Acta 1757:553–561. doi:10.1016/j.bbabio.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  11. Wallace MA, Liou LL, Martins J, Clement MH, Bailey S, Longo VD, Valentine JS, Gralla EB (2004) Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem 279:32055–32062

    Article  CAS  PubMed  Google Scholar 

  12. Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257:5751–5754

    CAS  PubMed  Google Scholar 

  13. Shimizu N, Kobayashi K, Hayashi K (1984) The reaction of superoxide radical with catalase. Mechanism of the inhibition of catalase by superoxide radical. J Biol Chem 259:4414–4418

    CAS  PubMed  Google Scholar 

  14. Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond Ser B Biol Sci 360:2335–2345

    Article  CAS  Google Scholar 

  15. Wiernsperger NF (2003) Oxidative stress: the special case of diabetes. Biofactors 19:11–18

    Article  CAS  PubMed  Google Scholar 

  16. Sorolla MA, Rodríguez-Colman MJ, Vall-llaura N, Tamarit J, Ros J, Cabiscol E (2012) Protein oxidation in Huntington disease. Biofactors 38:173–185. doi:10.1002/biof.1013

    Article  CAS  PubMed  Google Scholar 

  17. Nakka VP, Prakash-Babu P, Vemuganti R (2016) Crosstalk between endoplasmic reticulum stress, oxidative stress, and autophagy: potential therapeutic targets for acute CNS injuries. Mol Neurobiol 53:532–544. doi:10.1007/s12035-014-9029-6

    Article  CAS  PubMed  Google Scholar 

  18. de Oliveira MR (2015) The dietary components carnosic acid and carnosol as neuroprotective agents: a mechanistic view. Mol Neurobiol. doi:10.1007/s12035-015-9519-1

    Google Scholar 

  19. García-Niño WR, Zazueta C (2015) Ellagic acid: pharmacological activities and molecular mechanisms involved in liver protection. Pharmacol Res 97:84–103. doi:10.1016/j.phrs.2015.04.008

    Article  PubMed  Google Scholar 

  20. Anderson R, Prolla T (2009) PGC-1alpha in aging and anti-aging interventions. Biochim Biophys Acta 1790:1059–1066. doi:10.1016/j.bbagen.2009.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Oliveira MR, Nabavi SF, Manayi A, Daglia M, Hajheydari Z, Nabavi SM (2016) Resveratrol and the mitochondria: from triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochim Biophys Acta 1860:727–745. doi:10.1016/j.bbagen.2016.01.017

    Article  PubMed  Google Scholar 

  22. de Oliveira MR, Ferreira GC, Schuck PF (2015) Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: role for PI3K/Akt/Nrf2 pathway. Toxicol in Vitro 32:41–54. doi:10.1016/j.tiv.2015.12.005

    Article  PubMed  Google Scholar 

  23. de Oliveira MR, Ferreira GC, Schuck PF, Dal Bosco SM (2015) Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Chem Biol Interact 242:396–406. doi:10.1016/j.cbi.2015.11.003

    Article  PubMed  Google Scholar 

  24. de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM (2015) The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res 100:296–308. doi:10.1016/j.phrs.2015.08.021

    Article  PubMed  Google Scholar 

  25. de Oliveira MR, Nabavi SM, Braidy N, Setzer WN, Ahmed T, Nabavi SF (2015) Quercetin and the mitochondria: a mechanistic view. Biotechnol Adv. doi:10.1016/j.biotechadv.2015.12.014

    Google Scholar 

  26. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36:1208–1213. doi:10.1016/j.freeradbiomed.2004.02.075

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295. doi:10.1074/jbc.R900010200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nguyen T, Yang CS, Pickett CB (2004) The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic Biol Med 37:433–441. doi:10.1016/j.freeradbiomed.2004.04.033

    Article  CAS  PubMed  Google Scholar 

  29. Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830:3143–3153. doi:10.1016/j.bbagen.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  30. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88:179–188. doi:10.1016/j.freeradbiomed.2015.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kovac S, Angelova PR, Holmström KM, Zhang Y, Dinkova-Kostova AT, Abramov AY (2015) Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochim Biophys Acta 1850:794–801. doi:10.1016/j.bbagen.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamada K, Fukushima T (1993) Mechanism of cytotoxicity of paraquat. II. Organ specificity of paraquat-stimulated lipid peroxidation in the inner membrane of mitochondria. Exp Toxicol Pathol 45:375–380

    Article  CAS  PubMed  Google Scholar 

  33. Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y (1993) Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I. Exp Toxicol Pathol 45:345–349

    Article  CAS  PubMed  Google Scholar 

  34. Tawara T, Fukushima T, Hojo N, Isobe A, Shiwaku K, Setogawa T, Yamane Y (1996) Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol 70:585–589

    Article  CAS  PubMed  Google Scholar 

  35. Baltazar MT, Dinis-Oliveira RJ, de Lourdes Bastos M, Tsatsakis AM, Duarte JA, Carvalho F (2014) Pesticides exposure as etiological factors of Parkinson’s disease and other neurodegenerative diseases-a mechanistic approach. Toxicol Lett 230:85–103. doi:10.1016/j.toxlet.2014.01.039

    Article  CAS  PubMed  Google Scholar 

  36. Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J (2014) New insights into antioxidant strategies against paraquat toxicity. Free Radic Res 48:623–640. doi:10.3109/10715762.2014.899694

    Article  CAS  PubMed  Google Scholar 

  37. Hirai K, Ikeda K, Wang GY (1992) Paraquat damage of rat liver mitochondria by superoxide production depends on extramitochondrial NADH. Toxicology 72:1–16

    Article  CAS  PubMed  Google Scholar 

  38. Steinbrenner H, Sies H (2009) Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta 1790:1478–1485. doi:10.1016/j.bbagen.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  39. Robb EL, Gawel JM, Aksentijević D, Cochemé HM, Stewart TS, Shchepinova MM, Qiang H, Prime TA, Bright TP, James AM, Shattock MJ, Senn HM, Hartley RC, Murphy MP (2015) Selective superoxide generation within mitochondria by the targeted redox cycler MitoParaquat. Free Radic Biol Med 89:883–894. doi:10.1016/j.freeradbiomed.2015.08.021

    Article  CAS  PubMed  Google Scholar 

  40. Cochemé HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798

    Article  PubMed  Google Scholar 

  41. Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17:1115–1125. doi:10.1038/cdd.2009.217

    Article  CAS  PubMed  Google Scholar 

  42. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012. doi:10.1155/2012/845618

  43. Moretto A, Colosio C (2011) Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson’s disease. Neurotoxicology 32:383–391. doi:10.1016/j.neuro.2011.03.004

    Article  CAS  PubMed  Google Scholar 

  44. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  45. LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  PubMed  Google Scholar 

  46. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

    Article  CAS  PubMed  Google Scholar 

  47. Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 328:85–92

    Article  CAS  PubMed  Google Scholar 

  48. Wang K, Zhu L, Zhu X, Zhang K, Huang B, Zhang J, Zhang Y, Zhu L, Zhou B, Zhou F (2014) Protective effect of paeoniflorin on Aβ25-35-induced SH-SY5Y cell injury by preventing mitochondrial dysfunction. Cell Mol Neurobiol 34:227–234. doi:10.1007/s10571-013-0006-9

    Article  PubMed  Google Scholar 

  49. de Oliveira MR, Lorenzi R, Schnorr CE, Morrone M, Moreira JC (2011) Increased 3-nitrotyrosine levels in mitochondrial membranes and impaired respiratory chain activity in brain regions of adult female rats submitted to daily vitamin a supplementation for 2 months. Brain Res Bull 86:246–253. doi:10.1016/j.brainresbull.2011.08.006

    Article  PubMed  Google Scholar 

  50. de Oliveira MR, da Rocha RF, Schnorr CE, Moreira JC (2012) L-NAME cotreatment did prevent neither mitochondrial impairment nor behavioral abnormalities in adult Wistar rats treated with vitamin a supplementation. Fundam Clin Pharmacol 26:513–529. doi:10.1111/j.1472-8206.2011.00943.x

    Article  PubMed  Google Scholar 

  51. Urano S, Sato Y, Otonari T, Makabe S, Suzuki S, Ogata M, Endo T (1998) Aging and oxidative stress in neurodegeneration. Biofactors 7:103–112

    Article  CAS  PubMed  Google Scholar 

  52. Nicholls DG (2002) Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 34:1372–1381

    Article  CAS  PubMed  Google Scholar 

  53. Cadonic C, Sabbir MG, Albensi BC (2015) Mechanisms of mitochondrial dysfunction in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-015-9515-5

    PubMed  Google Scholar 

  54. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kang J, Pervaiz S (2012) Mitochondria: redox metabolism and dysfunction. Biochem Res Int 2012:896751. doi:10.1155/2012/896751

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 37:755–767. doi:10.1016/j.freeradbiomed.2004.05.034

    Article  CAS  PubMed  Google Scholar 

  57. Dröse S, Brandt U (2012) Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 748:145–169. doi:10.1007/978-1-4614-3573-0_6

    Article  PubMed  Google Scholar 

  58. Onyango IG (2008) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 33:589–597

    Article  CAS  PubMed  Google Scholar 

  59. Atamna H, Mackey J, Dhahbi JM (2012) Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction. Biofactors 38:158–166. doi:10.1002/biof.197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fernández-Moriano C, González-Burgos E, Gómez-Serranillos MP (2015) Mitochondria-targeted protective compounds in Parkinson’s and Alzheimer’s diseases. Oxidative Med Cell Longev 2015:408927. doi:10.1155/2015/408927

    Article  Google Scholar 

  61. Oliveira MR, Nabavi SF, Daglia M, Rastrelli L, Nabavi SM (2016) Epigallocatechin gallate and mitochondria-a story of life and death. Pharmacol Res 104:70–85. doi:10.1016/j.phrs.2015.12.027

    Article  CAS  PubMed  Google Scholar 

  62. McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S (2004) Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble coenzyme Q10. Toxicol Appl Pharmacol 201:21–31. doi:10.1016/j.taap.2004.04.019

    Article  CAS  PubMed  Google Scholar 

  63. Yang WL, Sun AY (1998) Paraquat-induced cell death in PC12 cells. Neurochem Res 23:1387–1394

    Article  CAS  PubMed  Google Scholar 

  64. Takizawa M, Komori K, Tampo Y, Yonaha M (2007) Paraquat-induced oxidative stress and dysfunction of cellular redox systems including antioxidative defense enzymes glutathione peroxidase and thioredoxin reductase. Toxicol in Vitro 21:355–363. doi:10.1016/j.tiv.2006.09.003

    Article  CAS  PubMed  Google Scholar 

  65. Ahmad I, Shukla S, Kumar A, Singh BK, Kumar V, Chauhan AK, Singh D, Pandey HP, Singh C (2013) Biochemical and molecular mechanisms of N-acetyl cysteine and silymarin-mediated protection against maneb- and paraquat-induced hepatotoxicity in rats. Chem Biol Interact 201:9–18. doi:10.1016/j.cbi.2012.10.027

    Article  CAS  PubMed  Google Scholar 

  66. Tao S, Justiniano R, Zhang DD, Wondrak GT (2013) The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV. Redox Biol 1:532–541. doi:10.1016/j.redox.2013.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tao S, Zheng Y, Lau A, Jaramillo MC, Chau BT, Lantz RC, Wong PK, Wondrak GT, Zhang DD (2013) Tanshinone I activates the Nrf2-dependent antioxidant response and protects against as(III)-induced lung inflammation in vitro and in vivo. Antioxid Redox Signal 19:1647–1661. doi:10.1089/ars.2012.5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhou S, Chen W, Su H, Zheng X (2013) Protective properties of tanshinone I against oxidative DNA damage and cytotoxicity. Food Chem Toxicol 62:407–412. doi:10.1016/j.fct.2013.08.084

    Article  CAS  PubMed  Google Scholar 

  69. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  PubMed  Google Scholar 

  70. Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224C:164–175. doi:10.1016/j.cbi.2014.10.016

    Article  Google Scholar 

  71. Pae HO, Kim EC, Chung HT (2008) Integrative survival response evoked by heme oxygenase-1 and heme metabolites. J Clin Biochem Nutr 42:197–203. doi:10.3164/jcbn.2008029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Surh YJ, Kundu JK, Li MH, Na HK, Cha YN (2009) Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress. Arch Pharm Res 32:1163–1176. doi:10.1007/s12272-009-1807-8

    Article  CAS  PubMed  Google Scholar 

  73. Dinkova-Kostova AT, Fahey JW, Talalay P (2004) Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol 382:423–448

    Article  CAS  PubMed  Google Scholar 

  74. Dinkova-Kostova AT, Talalay P (2010) NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501:116–123. doi:10.1016/j.abb.2010.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Green DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science 345:1250256. doi:10.1126/science.1250256

    Article  PubMed  PubMed Central  Google Scholar 

  76. Maloney PC (1982) Energy coupling to ATP synthesis by the proton-translocating ATPase. J Membr Biol 67:1–12

    Article  CAS  PubMed  Google Scholar 

  77. Bernardi P, Di Lisa F, Fogolari F, Lippe G (2015) From ATP to PTP and back: a dual function for the mitochondrial ATP synthase. Circ Res 116:1850–1862. doi:10.1161/CIRCRESAHA.115.306557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Melser S, Lavie J, Bénard G (2015) Mitochondrial degradation and energy metabolism. Biochim Biophys Acta 1853:2812–2821. doi:10.1016/j.bbamcr.2015.05.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). PFS is recipient of a CNPq fellow (Bolsista de Produtividade em Pesquisa 2—CA BF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Roberto de Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Role of the Funding Source

The sponsors of this work had no role in the study design; in the collection, analysis, and interpretation of the data; in the writing of the report; and in the decision to submit the article for publication.

Electronic supplementary material

Figure S1

The effects of paraquat (PQ) at different concentrations for 24 h on cell viability (A), cytotoxicity (B), and ROS production (C). (D) Cell viability of SH-SY5Y cells exposed to PQ at 100 μM for different periods. Data are presented as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, *p < 0.05 vs the control group. (PDF 107 kb)

Figure S2

The effects of a pretreatment with tanshinone-I (T-I) at 1–5 μM for 2 h on cell viability (A), cytotoxicity (B), and ROS production (C). Data are presented as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, *p < 0.05 vs the control group, # p < 0.05 different from PQ-treated group, a p < 0.01 different from PQ-treated cells. (PDF 105 kb)

Figure S3

The effects of a pretreatment with T-I at 2.5 μM for 2 h on (A) Bax immunocontent, (B) Bcl-2 immunocontent, (C) cytosolic cytochrome c content, (D) caspase-9 activity, (E) caspase-3 activity, and (F) DNA fragmentation. PQ was utilized at 100 μM for 24 h. Data are presented as the mean ± SEM of three or five independent experiments each done in triplicate. One-way ANOVA followed by the post hoc Tukey’s test, * p < 0.05 vs control cells, a p < 0.05 vs the cells treated with either PQ or T-I alone. (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, M.R., Schuck, P.F. & Bosco, S.M.D. Tanshinone I Induces Mitochondrial Protection through an Nrf2-Dependent Mechanism in Paraquat-TreatedHuman Neuroblastoma SH-SY5Y Cells. Mol Neurobiol 54, 4597–4608 (2017). https://doi.org/10.1007/s12035-016-0009-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0009-x

Keywords

Navigation