Skip to main content

Advertisement

Log in

Intranasal Insulin Administration Ameliorates Streptozotocin (ICV)-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Memory Impairment in Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is associated with reduced insulin level and impairment of insulin receptor (IR) signaling in the brain, which correlates to amyloid pathology, neuroinflammation, and synaptic neurotoxicity. Clinical studies show that intranasal insulin improves memory in AD patients without peripheral hypoglycemia. However, neuroprotective molecular mechanism of the beneficial effect of intranasal insulin in AD pathology is unexplored. Therefore, we investigated the role of intranasal insulin on intracerebroventricular (ICV) streptozotocin (STZ)-induced memory impairment in rats as evaluated in the Morris water maze test. STZ (ICV) treated rats had shown memory impairment along with a significant decrease in IR signaling molecules (IR, pIRS-1, pAkt, and pGSK-3α/β expression) and IDE expression in both hippocampus and cerebral cortex. Intranasal insulin delivery prevented these changes. Moreover, intranasal insulin was found to inhibit significantly glial cell activation (GFAP and Iba-1 expression), neuroinflammation (COX-2 expression, NFκB translocation, TNF-α, and IL-10 level) and amyloidogenic protein expression (BACE-1 and Aβ1–42 expression) in STZ (ICV)-injected rats. STZ (ICV)-induced caspase activation and postsynaptic neurotoxicity were also prevented by treatment with intranasal insulin. Our findings reveal that insulin has the neuroprotective effect and clearly signifies the potential use of intranasal insulin delivery for the treatment of AD.

Neuroprotective effects of intranasal insulin administration on streptozotocin (ICV)-induced memory impairment in rats

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

IRS-1:

Insulin receptor substrate 1

pIRS-1:

Phospho-insulin receptor substrate 1

PKB:

Protein kinase B

GSK-3:

Glycogen synthase kinase 3

IDE:

Insulin-degrading enzyme

GFAP:

Glial fibrillary acidic protein

Iba-1:

Ionized calcium-binding adapter molecule 1

COX-2:

Cyclooxygenase

NFκB:

Nuclear factor kappa B

TNF-α:

Tumor necrosis factor alpha

IL-10:

Interleukin-10

APP:

Amyloid precursor protein

BACE-1:

Beta-site APP cleaving enzyme 1

Aβ:

Amyloid-β

References

  1. Fita IG, Enciu AM, Stanoiu BP (2011) New insights on Alzheimer’s disease diagnostic. Romanian J Morphol Embryol 52(3 Suppl):975–979

    Google Scholar 

  2. McGowan E, Eriksen J, Hutton M (2006) A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 22(5):281–289

    Article  CAS  PubMed  Google Scholar 

  3. Iqbal K, Grundke-Iqbal I (2005) Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies. Acta Neuropathol 109(1):25–31

    Article  CAS  PubMed  Google Scholar 

  4. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A et al (1998) Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm (Vienna) 105(4–5):423–438

    Article  CAS  Google Scholar 

  5. de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7(1):45–61

    Article  PubMed  Google Scholar 

  6. Agrawal R, Tyagi E, Shukla R, Nath C (2011) Insulin receptor signaling in rat hippocampus: a study in STZ (ICV) induced memory deficit model. Eur Neuropsychopharmacol 21(3):261–273

    Article  CAS  PubMed  Google Scholar 

  7. de la Monte SM (2014) Type 3 diabetes is sporadic Alzheimers disease: mini-review. Eur Neuropsychopharmacol 24(12):1954–1960

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274(49):34893–34902

    Article  CAS  PubMed  Google Scholar 

  9. Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56(4):779–787

    Article  CAS  PubMed  Google Scholar 

  10. Banks WA, Kastin AJ (1985) Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res Bull 15(3):287–292

    Article  CAS  PubMed  Google Scholar 

  11. Woods SC, Seeley RJ, Baskin DG, Schwartz MW (2003) Insulin and the blood-brain barrier. Curr Pharm Des 9(10):795–800

    Article  CAS  PubMed  Google Scholar 

  12. Schechter R, Abboud M (2001) Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures. Brain Res Dev Brain Res 127(1):41–49

    Article  CAS  PubMed  Google Scholar 

  13. Grillo CA, Piroli GG, Hendry RM, Reagan LP (2009) Insulin-stimulated translocation of GLUT4 to the plasma membrane in rat hippocampus is PI3-kinase dependent. Brain Res 1296:35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H (2013) Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 35(5):741–751

    Article  PubMed  Google Scholar 

  15. Johnston AM, Pirola L, Van Obberghen E (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signalling. FEBS Lett 546(1):32–36

    Article  CAS  PubMed  Google Scholar 

  16. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789

    Article  CAS  PubMed  Google Scholar 

  17. Rajasekar N, Dwivedi S, Nath C, Hanif K, Shukla R (2014) Protection of streptozotocin induced insulin receptor dysfunction, neuroinflammation and amyloidogenesis in astrocytes by insulin. Neuropharmacology 86:337–352

    Article  CAS  PubMed  Google Scholar 

  18. Solano DC, Sironi M, Bonfini C, Solerte SB, Govoni S, Racchi M (2000) Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. FASEB J 14(7):1015–1022

    CAS  PubMed  Google Scholar 

  19. Wang X, Zheng W, Xie JW, Wang T, Wang SL, Teng WP, Wang ZY (2010) Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol Neurodegener 5:46

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405. doi:10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  Google Scholar 

  21. Niranjan R (2013) Molecular basis of etiological implications in Alzheimer’s disease: focus on neuroinflammation. Mol Neurobiol 48(3):412–428. doi:10.1007/s12035-013-8428-4

    Article  CAS  PubMed  Google Scholar 

  22. Yu W, Mechawar N, Krantic S, Quirion R (2010) Evidence for the involvement of apoptosis-inducing factor-mediated caspase-independent neuronal death in Alzheimer disease. Am J Pathol 176(5):2209–2218. doi:10.2353/ajpath.2010.090496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290(5492):750–754

    Article  CAS  PubMed  Google Scholar 

  24. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, Kern W (2004) Intranasal insulin improves memory in humans. Psychoneuroendocrinology 29(10):1326–1334

    Article  CAS  PubMed  Google Scholar 

  25. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127(2):481–496

    Article  CAS  PubMed  Google Scholar 

  26. Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–628

    Article  CAS  PubMed  Google Scholar 

  27. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, Fishel MA, Plymate SR et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70(6):440–448

    Article  CAS  PubMed  Google Scholar 

  28. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, Born J, Kern W (2007) Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology 32(1):239–243

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M, Yu X, Gong CX (2013) Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimers Dis 33(2):329–338

    CAS  PubMed  Google Scholar 

  30. Chen Y, Zhao Y, Dai CL, Liang Z, Run X, Iqbal K, Liu F, Gong CX (2014) Intranasal insulin restores insulin signaling, increases synaptic proteins, and reduces Abeta level and microglia activation in the brains of 3xTg-AD mice. Exp Neurol 261:610–619

    Article  CAS  PubMed  Google Scholar 

  31. Wadman M (2012) US government sets out Alzheimer’s plan. Nature 485(7399):426–427

    Article  CAS  PubMed  Google Scholar 

  32. Bedse G, Di Domenico F, Serviddio G, Cassano T (2015) Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9:204

    Article  PubMed  PubMed Central  Google Scholar 

  33. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, Arbuckle M, Callaghan M et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed  Google Scholar 

  34. Rai S, Kamat PK, Nath C, Shukla R (2013) A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J Neuroimmunol 254(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  35. Shingo AS, Kanabayashi T, Kito S, Murase T (2013) Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav Brain Res 241:105–111

    Article  CAS  PubMed  Google Scholar 

  36. Rai S, Kamat PK, Nath C, Shukla R (2014) Glial activation and post-synaptic neurotoxicity: the key events in streptozotocin (ICV) induced memory impairment in rats. Pharmacol Biochem Behav 117:104–117

    Article  CAS  PubMed  Google Scholar 

  37. Tota S, Kamat PK, Saxena G, Hanif K, Najmi AK, Nath C (2012) Central angiotensin converting enzyme facilitates memory impairment in intracerebroventricular streptozotocin treated rats. Behav Brain Res 226(1):317–330

    Article  CAS  PubMed  Google Scholar 

  38. Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various regions of the brain. J Neurochem 13(8):655–669

    Article  CAS  PubMed  Google Scholar 

  39. Tyagi E, Agrawal R, Nath C, Shukla R (2008) Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. J Neuroimmunol 205(1–2):51–56

    Article  CAS  PubMed  Google Scholar 

  40. Kamat PK, Tota S, Shukla R, Ali S, Najmi AK, Nath C (2011) Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacol Biochem Behav 100(2):311–319

    Article  CAS  PubMed  Google Scholar 

  41. Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, Shukla R (2013) Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 715(1–3):381–394

    Article  CAS  PubMed  Google Scholar 

  42. Tiwari RL, Singh V, Singh A, Barthwal MK (2011) IL-1R-associated kinase-1 mediates protein kinase Cdelta-induced IL-1beta production in monocytes. J Immunol 187(5):2632–2645

    Article  CAS  PubMed  Google Scholar 

  43. Adzovic L, Lynn AE, D’Angelo HM, Crockett AM, Kaercher RM, Royer SE, Hopp SC, Wenk GL (2015) Insulin improves memory and reduces chronic neuroinflammation in the hippocampus of young but not aged brains. J Neuroinflammation 12:63

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barilar JO, Knezovic A, Grunblatt E, Riederer P, Salkovic-Petrisic M (2015) Nine-month follow-up of the insulin receptor signalling cascade in the brain of streptozotocin rat model of sporadic Alzheimer’s disease. J Neural Transm (Vienna) 122(4):565–576

    Article  Google Scholar 

  45. Kahn AM, Husid A, Allen JC, Seidel CL, Song T (1997) Insulin acutely inhibits cultured vascular smooth muscle cell contraction by a nitric oxide synthase-dependent pathway. Hypertension 30(4):928–933

    Article  CAS  PubMed  Google Scholar 

  46. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  47. de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9(1):35–66

    Article  PubMed  PubMed Central  Google Scholar 

  48. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci U S A 106(6):1971–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maccioni RB, Rojo LE, Fernandez JA, Kuljis RO (2009) The role of neuroimmunomodulation in Alzheimer’s disease. Ann N Y Acad Sci 1153:240–246

    Article  CAS  PubMed  Google Scholar 

  50. Simpson JE, Ince PG, Lace G, Forster G, Shaw PJ, Matthews F, Savva G, Brayne C et al (2010) Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiol Aging 31(4):578–590

    Article  CAS  PubMed  Google Scholar 

  51. Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA et al (1999) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286(5448):2352–2355

    Article  CAS  PubMed  Google Scholar 

  52. Heneka MT, O’Banion MK (2007) Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 184(1–2):69–91

    Article  CAS  PubMed  Google Scholar 

  53. Liu Z, Chen HQ, Huang Y, Qiu YH, Peng YP (2016) Transforming growth factor-beta1 acts via TbetaR-I on microglia to protect against MPP(+)-induced dopaminergic neuronal loss. Brain Behav Immun 51:131–143. doi:10.1016/j.bbi.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  54. Sastre M, Walter J, Gentleman SM (2008) Interactions between APP secretases and inflammatory mediators. J Neuroinflammation 5:25

    Article  PubMed  PubMed Central  Google Scholar 

  55. Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF et al (2008) Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 32(3):412–419

    Article  CAS  PubMed  Google Scholar 

  56. Perry RT, Collins JS, Wiener H, Acton R, Go RC (2001) The role of TNF and its receptors in Alzheimer’s disease. Neurobiol Aging 22(6):873–883

    Article  CAS  PubMed  Google Scholar 

  57. Remarque EJ, Bollen EL, Weverling-Rijnsburger AW, Laterveer JC, Blauw GJ, Westendorp RG (2001) Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Exp Gerontol 36(1):171–176

    Article  CAS  PubMed  Google Scholar 

  58. Yamamoto Y, Gaynor RB (2004) IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci 29(2):72–79

    Article  CAS  PubMed  Google Scholar 

  59. Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y et al (2012) Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15(1):77–90

    Article  CAS  PubMed  Google Scholar 

  60. Bortoff KD, Keeton AB, Franklin JL, Messina JL (2010) Anti-inflammatory action of insulin via induction of Gadd45-beta transcription by the mTOR signaling pathway. Hepat Med 2001(2):79–85

    PubMed  Google Scholar 

  61. Schabbauer G, Tencati M, Pedersen B, Pawlinski R, Mackman N (2004) PI3K-Akt pathway suppresses coagulation and inflammation in endotoxemic mice. Arterioscler Thromb Vasc Biol 24(10):1963–1969. doi:10.1161/01.ATV.0000143096.15099.ce

    Article  CAS  PubMed  Google Scholar 

  62. Kidd LB, Schabbauer GA, Luyendyk JP, Holscher TD, Tilley RE, Tencati M, Mackman N (2008) Insulin activation of the phosphatidylinositol 3-kinase/protein kinase B (Akt) pathway reduces lipopolysaccharide-induced inflammation in mice. J Pharmacol Exp Ther 326(1):348–353. doi:10.1124/jpet.108.138891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, Ahmad S (2001) Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 86(7):3257–3265. doi:10.1210/jcem.86.7.7623

    CAS  PubMed  Google Scholar 

  64. Bourne KZ, Ferrari DC, Lange-Dohna C, Rossner S, Wood TG, Perez-Polo JR (2007) Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res 85(6):1194–1204

    Article  CAS  PubMed  Google Scholar 

  65. Chami L, Buggia-Prevot V, Duplan E, Delprete D, Chami M, Peyron JF, Checler F (2012) Nuclear factor-kappaB regulates betaAPP and beta- and gamma-secretases differently at physiological and supraphysiological Abeta concentrations. J Biol Chem 287(29):24573–24584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9(1):13–33

    Article  CAS  PubMed  Google Scholar 

  67. Devi L, Alldred MJ, Ginsberg SD, Ohno M (2012) Mechanisms underlying insulin deficiency-induced acceleration of beta-amyloidosis in a mouse model of Alzheimer’s disease. PLoS One 7(3):e32792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ashok A, Rai NK, Tripathi S, Bandyopadhyay S (2015) Exposure to As-, Cd-, and Pb-mixture induces Abeta, amyloidogenic APP processing and cognitive impairments via oxidative stress-dependent neuroinflammation in young rats. Toxicol Sci 143(1):64–80

    Article  CAS  PubMed  Google Scholar 

  69. Caccamo A, Oddo S, Sugarman MC, Akbari Y, LaFerla FM (2005) Age- and region-dependent alterations in Abeta-degrading enzymes: implications for Abeta-induced disorders. Neurobiol Aging 26(5):645–654. doi:10.1016/j.neurobiolaging.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  70. Lifshitz V, Benromano T, Weiss R, Blanga-Kanfi S, Frenkel D (2013) Insulin-degrading enzyme deficiency accelerates cerebrovascular amyloidosis in an animal model. Brain Behav Immun 30:143–149. doi:10.1016/j.bbi.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  71. Zhao L, Teter B, Morihara T, Lim GP, Ambegaokar SS, Ubeda OJ, Frautschy SA, Cole GM (2004) Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer’s disease intervention. J Neurosci 24(49):11120–11126. doi:10.1523/JNEUROSCI.2860-04.2004

    Article  CAS  PubMed  Google Scholar 

  72. Droge W, Kinscherf R (2008) Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 10(4):661–678

    Article  PubMed  Google Scholar 

  73. Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, Sathler LB, Brito-Moreira J et al (2013) TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s beta-amyloid oligomers in mice and monkeys. Cell Metab 18(6):831–843

    Article  CAS  PubMed  Google Scholar 

  74. Okouchi M, Okayama N, Aw TY (2009) Preservation of cellular glutathione status and mitochondrial membrane potential by N-acetylcysteine and insulin sensitizers prevent carbonyl stress-induced human brain endothelial cell apoptosis. Curr Neurovasc Res 6(4):267–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barber AJ, Nakamura M, Wolpert EB, Reiter CE, Seigel GM, Antonetti DA, Gardner TW (2001) Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 276(35):32814–32821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support from DBT (BT/PR4012/MED/ 30/672/201 Dated 28/03/2012) and SRF to N. Rajasekar from CSIR, New Delhi, India, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Shukla.

Ethics declarations

Conflict of Interest

There is no conflict of interest among any of the contributing authors.

Additional information

CSIR-CDRI communication no: 9341

Electronic supplementary material

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekar, N., Nath, C., Hanif, K. et al. Intranasal Insulin Administration Ameliorates Streptozotocin (ICV)-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Memory Impairment in Rats. Mol Neurobiol 54, 6507–6522 (2017). https://doi.org/10.1007/s12035-016-0169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0169-8

Keywords

Navigation