Skip to main content

Advertisement

Log in

Memory and Learning Dysfunction Following Copper Toxicity: Biochemical and Immunohistochemical Basis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The prototype disease of Cu toxicity in human is Wilson disease, and cognitive impairment is the presenting symptom of it. There is no study correlating Cu-induced excitotoxicity, apoptosis, and astrocytic reaction with memory dysfunction. We report excitotoxicity, apoptosis, and astrocytic reaction of the hippocampus and frontal cortex with memory dysfunction in rat model of Cu toxicity. Thirty-six rats were divided into group I (control) and group II (100 mg/kgBwt/day CuSO4 orally). Y-maze was performed for memory and learning at 0, 30, 60, and 90 days. Frontal and hippocampal free Cu concentration, oxidative stress markers [glutathione (GSH), total antioxidant toxicity (TAC), and malondialdehyde (MDA)], and glutamate were measured by atomic absorption spectroscopy, spectrophotometry, and ELISA, respectively. N-methyl-d-aspartate receptors (NMDARs) NR1, NR2A, and NR2B were done by real-time polymerase chain reaction. Immunohistochemistry for caspase-3 and glial fibrillary acidic protein (GFAP) were done and quantified using the ImageJ software. The glutamate level in hippocampus was increased, and NMDAR expression was decreased at 30, 60, and 90 days in group II compared to group I. In the frontal cortex, glutamate was increased at 90 days, but NMDARs were not significantly different in group II compared to group I. Caspase-3 and GFAP expressions were also higher in group II compared to group I, and these changes were more marked in hippocampus than frontal cortex. These changes correlated with respective free tissue Cu, oxidative stress, and Y-maze attention score. Cu toxicity induces apoptosis and astrocytosis of the hippocampus and frontal cortex through direct or glutamate and oxidative stress pathways, and results in impaired memory and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cu:

Copper

GSH:

Glutathione

TAC:

Total antioxidant capacity

MDA:

Malondialdehyde

LPO:

Lipid peroxidation

kgBWt:

kg body weight

WD:

Wilson disease

NMDA:

N-methyl-d-aspartate

GFAP:

Glial fibrillary acidic protein

References

  1. Fu S, O’Neal S, Hong L, Jiang W, Zheng W (2015) Elevated adult neurogenesis in brain subventricular zone following in vivo manganese exposure: roles of copper and DMT1. Toxicol Sci 143(2):482–498. doi:10.1093/toxsci/kfu249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Llanos RM, Mercer JF (2002) The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol 21(4):259–270. doi:10.1089/104454902753759681

    Article  CAS  PubMed  Google Scholar 

  3. Litwin T, Gromadzka G, Szpak GM, Jablonka-Salach K, Bulska E, Czlonkowska A (2013) Brain metal accumulation in Wilson’s disease. J Neurol Sci 329(1–2):55–58. doi:10.1016/j.jns.2013.03.021

    Article  CAS  PubMed  Google Scholar 

  4. Choi BS, Zheng W (2009) Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res 1248:14–21. doi:10.1016/j.brainres.2008.10.056

    Article  CAS  PubMed  Google Scholar 

  5. Wu F, Wang J, Pu C, Qiao L, Jiang C (2015) Wilson’s disease: a comprehensive review of the molecular mechanisms. Int J Mol Sci 16(3):6419–6431. doi:10.3390/ijms16036419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rodriguez-Castro KI, Hevia-Urrutia FJ, Sturniolo GC (2015) Wilson’s disease: a review of what we have learned. World J Hepatol 7(29):2859–2870. doi:10.4254/wjh.v7.i29.2859

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14(1):103–113. doi:10.1016/S1474-4422(14)70190-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Das M, Misra UK, Kalita J (2007) A study of clinical, MRI and multimodality evoked potentials in neurologic Wilson disease. Eur J Neurol 14(5):498–504. doi:10.1111/j.1468-1331.2006.01676.x

    Article  CAS  PubMed  Google Scholar 

  9. Ranjan A, Kalita J, Kumar S, Bhoi SK, Misra UK (2015) A study of MRI changes in Wilson disease and its correlation with clinical features and outcome. Clin Neurol Neurosurg 138:31–36. doi:10.1016/j.clineuro.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  10. Sinha S, Taly AB, Prashanth LK, Ravishankar S, Arunodaya GR, Vasudev MK (2007) Sequential MRI changes in Wilson’s disease with de-coppering therapy: a study of 50 patients. Br J Radiol 80(957):744–749. doi:10.1259/bjr/48911350

    Article  CAS  PubMed  Google Scholar 

  11. Alanen A, Komu M, Penttinen M, Leino R (1999) Magnetic resonance imaging and proton MR spectroscopy in Wilson’s disease. Br J Radiol 72(860):749–756. doi:10.1259/bjr.72.860.10624340

    Article  CAS  PubMed  Google Scholar 

  12. Kalita J, Kumar V, Misra UK, Ranjan A, Khan H, Konwar R (2014) A study of oxidative stress, cytokines and glutamate in Wilson disease and their asymptomatic siblings. J Neuroimmunol 274(1–2):141–148. doi:10.1016/j.jneuroim.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  13. Kalita J, Kumar V, Ranjan A, Misra UK (2015) Role of oxidative stress in the worsening of neurologic Wilson disease following chelating therapy. NeuroMolecular Med 17(4):364–372. doi:10.1007/s12017-015-8364-8

    Article  CAS  PubMed  Google Scholar 

  14. Ozcelik D, Uzun H (2009) Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res 127(1):45–52. doi:10.1007/s12011-008-8219-3

    Article  CAS  PubMed  Google Scholar 

  15. Musacco-Sebio R, Ferrarotti N, Saporito-Magrina C, Semprine J, Fuda J, Torti H, Boveris A, Repetto MG (2014) Oxidative damage to rat brain in iron and copper overloads. Metallomics 6(8):1410–1416. doi:10.1039/c3mt00378g

    Article  CAS  PubMed  Google Scholar 

  16. Gaier ED, Rodriguiz RM, Zhou J, Ralle M, Wetsel WC, Eipper BA, Mains RE (2014) In vivo and in vitro analyses of amygdalar function reveal a role for copper. J Neurophysiol 111(10):1927–1939. doi:10.1152/jn.00631.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gaier ED, Eipper BA, Mains RE (2013) Copper signaling in the mammalian nervous system: synaptic effects. J Neurosci Res 91(1):2–19. doi:10.1002/jnr.23143

    CAS  PubMed  Google Scholar 

  18. Horning MS, Trombley PQ (2001) Zinc and copper influence excitability of rat olfactory bulb neurons by multiple mechanisms. J Neurophysiol 86(4):1652–1660

    Article  CAS  PubMed  Google Scholar 

  19. Trombley PQ, Shepherd GM (1996) Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. J Neurophysiol 76(4):2536–2546

    Article  CAS  PubMed  Google Scholar 

  20. Weiser T, Wienrich M (1996) The effects of copper ions on glutamate receptors in cultured rat cortical neurons. Brain Res 742(1–2):211–218

    Article  CAS  PubMed  Google Scholar 

  21. Schlief ML, Gitlin JD (2006) Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 33(2):81–90. doi:10.1385/MN:33:2:81

    Article  CAS  PubMed  Google Scholar 

  22. Opazo CM, Greenough MA, Bush AI (2014) Copper: from neurotransmission to neuroproteostasis. Front Aging Neurosci 6:143. doi:10.3389/fnagi.2014.00143

    Article  PubMed  PubMed Central  Google Scholar 

  23. Salazar-Weber NL, Smith JP (2011) Copper inhibits NMDA receptor-independent LTP and modulates the paired-pulse ratio after LTP in mouse hippocampal slices. Int J Alzheimers Dis 2011:864753. doi:10.4061/2011/864753

    PubMed  PubMed Central  Google Scholar 

  24. Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62(5):556–565. doi:10.1016/j.neuint.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  25. Kalita J, Kumar V, Misra UK (2016) A study on apoptosis and anti-apoptotic status in Wilson disease. Mol Neurobiol 53(10):6659–6667. doi:10.1007/s12035-015-9570-y

    Article  CAS  PubMed  Google Scholar 

  26. Ranjan A, Kalita J, Kumar V, Misra UK (2015) MRI and oxidative stress markers in neurological worsening of Wilson disease following penicillamine. Neurotoxicology 49:45–49. doi:10.1016/j.neuro.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  27. Kalita J, Kumar V, Chandra S, Kumar B, Misra UK (2014) Worsening of Wilson disease following penicillamine therapy. Eur Neurol 71(3–4):126–131. doi:10.1159/000355276

    Article  CAS  PubMed  Google Scholar 

  28. Vlachova V, Zemkova H, Vyklicky L Jr (1996) Copper modulation of NMDA responses in mouse and rat cultured hippocampal neurons. Eur J Neurosci 8(11):2257–2264

    Article  CAS  PubMed  Google Scholar 

  29. Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E (2009) Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res 1256:69–75. doi:10.1016/j.brainres.2008.12.041

    Article  CAS  PubMed  Google Scholar 

  30. Maureira C, Letelier JC, Alvarez O, Delgado R, Vergara C (2015) Copper enhances cellular and network excitabilities, and improves temporal processing in the rat hippocampus. Eur J Neurosci 42(12):3066–3080. doi:10.1111/ejn.13104

    Article  PubMed  Google Scholar 

  31. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348(14):1365–1375. doi:10.1056/NEJMra022366

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt-Kastner R, Wietasch K, Weigel H, Eysel UT (1993) Immunohistochemical staining for glial fibrillary acidic protein (GFAP) after deafferentation or ischemic infarction in rat visual system: features of reactive and damaged astrocytes. Int J Dev Neurosci 11(2):157–174

    Article  CAS  PubMed  Google Scholar 

  33. Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443. doi:10.1016/j.pneurobio.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  34. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36(2):180–190. doi:10.1002/glia.1107

    Article  CAS  PubMed  Google Scholar 

  35. Schosinsky KH, Lehmann HP, Beeler MF (1974) Measurement of ceruloplasmin from its oxidase activity in serum by use of o-dianisidine dihydrochloride. Clin Chem 20(12):1556–1563

    CAS  PubMed  Google Scholar 

  36. Kumar V, Kalita J, Bora HK, Misra UK (2016) Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model. Toxicol Appl Pharmacol 293:37–43. doi:10.1016/j.taap.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  37. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S–1015S

    Article  CAS  PubMed  Google Scholar 

  38. Watanabe M, Fukaya M, Sakimura K, Manabe T, Mishina M, Inoue Y (1998) Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur J Neurosci 10(2):478–487

    Article  CAS  PubMed  Google Scholar 

  39. Tecchio F, Assenza G, Zappasodi F, Mariani S, Salustri C, Squitti R (2011) Glutamate-mediated primary somatosensory cortex excitability correlated with circulating copper and ceruloplasmin. Int J Alzheimers Dis 2011:292593. doi:10.4061/2011/292593

    PubMed  PubMed Central  Google Scholar 

  40. Strausak D, Mercer JF, Dieter HH, Stremmel W, Multhaup G (2001) Copper in disorders with neurological symptoms: Alzheimer’s, Menkes, and Wilson diseases. Brain Res Bull 55(2):175–185

    Article  CAS  PubMed  Google Scholar 

  41. Clements JD, Lester RA, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258(5087):1498–1501

    Article  CAS  PubMed  Google Scholar 

  42. Stavrovskaya IG, Kristal BS (2005) The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med 38(6):687–697. doi:10.1016/j.freeradbiomed.2004.11.032

    Article  CAS  PubMed  Google Scholar 

  43. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414. doi:10.1038/nn835

    Article  CAS  PubMed  Google Scholar 

  44. Jiao XT, Liu XQ, Huang LS, Zhang YJ, Han LS (2009) Role of caspase-3, -8, and -9 in apoptosis of copper induced primary cortical neurons. Zhongguo dang dai er ke za zhi = Chin J Contemp Pediatr 11(11):917–922

    CAS  Google Scholar 

  45. Santos S, Silva AM, Matos M, Monteiro SM, Alvaro AR (2016) Copper induced apoptosis in Caco-2 and Hep-G2 cells: expression of caspases 3, 8 and 9, AIF and p53. Comp Biochem Physiol Toxicol Pharmacol 185-186:138–146. doi:10.1016/j.cbpc.2016.03.010

    Article  CAS  Google Scholar 

  46. Reier PJ (2012) Gliosis following CNS injury: the anatomy of astrocytic scars and their influences on axonal elongation. Astrocytes 3:263–324

    Google Scholar 

  47. Pal A, Prasad R (2014) Recent discoveries on the functions of astrocytes in the copper homeostasis of the brain: a brief update. Neurotox Res 26(1):78–84. doi:10.1007/s12640-013-9453-9

    Article  CAS  PubMed  Google Scholar 

  48. Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4(3):229–237

    Article  CAS  PubMed  Google Scholar 

  49. Pal A, Badyal RK, Vasishta RK, Attri SV, Thapa BR, Prasad R (2013) Biochemical, histological, and memory impairment effects of chronic copper toxicity: a model for non-Wilsonian brain copper toxicosis in Wistar rat. Biol Trace Elem Res 153(1–3):257–268. doi:10.1007/s12011-013-9665-0

    Article  CAS  PubMed  Google Scholar 

  50. Pal A, Vasishta R, Prasad R (2013) Hepatic and hippocampus iron status is not altered in response to increased serum ceruloplasmin and serum “free” copper in Wistar rat model for non-Wilsonian brain copper toxicosis. Biol Trace Elem Res 154(3):403–411. doi:10.1007/s12011-013-9753-1

    Article  CAS  PubMed  Google Scholar 

  51. Przybylkowski A, Gromadzka G, Wawer A, Bulska E, Jablonka-Salach K, Grygorowicz T, Schnejder-Pacholek A, Czlonkowski A (2013) Neurochemical and behavioral characteristics of toxic milk mice: an animal model of Wilson’s disease. Neurochem Res 38(10):2037–2045. doi:10.1007/s11064-013-1111-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arnal N, Dominici L, de Tacconi MJ, Marra CA (2014) Copper-induced alterations in rat brain depends on route of overload and basal copper levels. Nutrition 30(1):96–106. doi:10.1016/j.nut.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  53. Alexandrova A, Petrov L, Georgieva A, Kessiova M, Tzvetanova E, Kirkova M, Kukan M (2008) Effect of copper intoxication on rat liver proteasome activity: relationship with oxidative stress. J Biochem Mol Toxicol 22(5):354–362. doi:10.1002/jbt.20248

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayantee Kalita.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

This research was approved by the Animal Ethics Committee of the CSIR-Central Drug Research Institute, Lucknow, India (IACE/2012/29).

Funding

Mr. Vijay Kumar received scholarship from Indian Council of Medical Research, Government of India (ICMR-JRF, 3/1/3/JRF-2009/MPD 31381).

Electronic Supplementary Material

Table S1

(DOCX 13 kb)

Table S2

(DOCX 14 kb)

Table S3

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, J., Kumar, V., Misra, U.K. et al. Memory and Learning Dysfunction Following Copper Toxicity: Biochemical and Immunohistochemical Basis. Mol Neurobiol 55, 3800–3811 (2018). https://doi.org/10.1007/s12035-017-0619-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0619-y

Keywords

Navigation