Skip to main content

Advertisement

Log in

Physical Exercise During Pregnancy Prevents Cognitive Impairment Induced by Amyloid-β in Adult Offspring Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the main aging-associated neurodegenerative disorder and is characterized by mitochondrial dysfunction, oxidative stress, synaptic failure, and cognitive decline. It has been a challenge to find disease course-modifying treatments. However, several studies demonstrated that regular physical activity and exercise are capable of promoting brain health by improving the cognitive function. Maternal lifestyle, including regular exercise during pregnancy, has also been shown to influence fetal development and disease susceptibility in adulthood through fetal metabolism programming. Here, we investigated the potential neuroprotective role of regular maternal swimming, before and during pregnancy, against amyloid-β neurotoxicity in the adult offspring. Behavioral and neurochemical analyses were performed 14 days after male offspring received a single, bilateral, intracerebroventricular (icv) injection of amyloid-β oligomers (AβOs). AβOs-injected rats of the sedentary maternal group exhibited learning and memory deficits, along with reduced synaptophysin, brain-derived neurotrophic factor (BDNF) levels, and alterations of mitochondrial function. Strikingly, the offspring of the sedentary maternal group had AβOs-induced behavioral alterations that were prevented by maternal exercise. This effect was accompanied by preventing the alteration of synaptophysin levels in the offspring of exercised dams. Additionally, offspring of the maternal exercise group exhibited an augmentation of functional mitochondria, as indicated by increases in mitochondrial mass and membrane potential, α-ketoglutarate dehydrogenase, and cytochrome c oxidase enzymes activities. Moreover, maternal exercise during pregnancy induced long-lasting modulation of fusion and fission proteins, Mfn1 and Drp1, respectively. Overall, our data demonstrates a potential protective effect of exercise during pregnancy against AβOs-induced neurotoxicity in the adult offspring brain, by mitigating the neurodegenerative process triggered by Alzheimer-associated AβOs through programming the brain metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Andrieu S, Coley N, Lovestone S, Aisen PS, Vellas B (2015) Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol 14(9):926–944. https://doi.org/10.1016/S1474-4422(15)00153-2

    Article  PubMed  Google Scholar 

  2. Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651. https://doi.org/10.1016/j.bcp.2013.12.024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344. https://doi.org/10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  4. Smith LM, Strittmatter SM (2017) Binding sites for amyloid-beta oligomers and synaptic toxicity. Cold Spring Harbor Perspect Med 7(5). https://doi.org/10.1101/cshperspect.a024075

  5. Hu NW, Smith IM, Walsh DM, Rowan MJ (2008) Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo. Brain 131(Pt 9):2414–2424. https://doi.org/10.1093/brain/awn174

    Article  PubMed  Google Scholar 

  6. Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U (2010) Amyloid-beta and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline. J Alzheimer's Dis 20(Suppl 2):S499–S512. https://doi.org/10.3233/JAD-2010-100504

    Article  CAS  Google Scholar 

  7. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15(9):1437–1449. https://doi.org/10.1093/hmg/ddl066

    Article  CAS  PubMed  Google Scholar 

  8. Kandimalla R, Reddy PH (2016) Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim Biophys Acta 1862(4):814–828. https://doi.org/10.1016/j.bbadis.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  9. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518. https://doi.org/10.1038/nrn2417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771. https://doi.org/10.1016/j.neuron.2014.05.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24(8):1023–1027

    Article  CAS  PubMed  Google Scholar 

  12. Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118(1):167–179. https://doi.org/10.1007/s00401-009-0536-x

    Article  PubMed  Google Scholar 

  13. Graham WV, Bonito-Oliva A, Sakmar TP (2017) Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 68:413–430. https://doi.org/10.1146/annurev-med-042915-103753

    Article  CAS  PubMed  Google Scholar 

  14. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532. https://doi.org/10.1016/S1474-4422(16)00062-4

    Article  PubMed  Google Scholar 

  15. Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH, Han HJ (2016) Abeta-induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta 1863(11):2820–2834. https://doi.org/10.1016/j.bbamcr.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  16. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443(7113):787–795. https://doi.org/10.1038/nature05292

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Wu Y, Zhang P, Sha H, Jia J, Hu Y, Zhu J (2012) Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience 205:10–17. https://doi.org/10.1016/j.neuroscience.2011.12.053

    Article  CAS  PubMed  Google Scholar 

  18. Eckert GP, Renner K, Eckert SH, Eckmann J, Hagl S, Abdel-Kader RM, Kurz C, Leuner K et al (2012) Mitochondrial dysfunction—a pharmacological target in Alzheimer’s disease. Mol Neurobiol 46(1):136–150. https://doi.org/10.1007/s12035-012-8271-z

    Article  CAS  PubMed  Google Scholar 

  19. Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC (2011) Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc 86(9):876–884. https://doi.org/10.4065/mcp.2011.0252

    Article  PubMed Central  PubMed  Google Scholar 

  20. Hoffmann K, Sobol NA, Frederiksen KS, Beyer N, Vogel A, Vestergaard K, Braendgaard H, Gottrup H et al (2016) Moderate-to-high intensity physical exercise in patients with Alzheimer’s disease: a randomized controlled trial. J Alzheimer's Dis 50(2):443–453. https://doi.org/10.3233/JAD-150817

    Article  Google Scholar 

  21. Kim MJ, Han CW, Min KY, Cho CY, Lee CW, Ogawa Y, Mori E, Kohzuki M (2016) Physical exercise with multicomponent cognitive intervention for older adults with Alzheimer’s disease: a 6-month randomized controlled trial. Dement Geriatr Cogn Dis Extra 6(2):222–232. https://doi.org/10.1159/000446508

    Article  PubMed Central  PubMed  Google Scholar 

  22. Yang SY, Shan CL, Qing H, Wang W, Zhu Y, Yin MM, Machado S, Yuan TF et al (2015) The effects of aerobic exercise on cognitive function of Alzheimer’s disease patients. CNS Neurol Disord Drug Targets 14(10):1292–1297

    Article  CAS  PubMed  Google Scholar 

  23. Teri L, Gibbons LE, McCurry SM, Logsdon RG, Buchner DM, Barlow WE, Kukull WA, LaCroix AZ et al (2003) Exercise plus behavioral management in patients with Alzheimer disease: a randomized controlled trial. Jama 290(15):2015–2022. https://doi.org/10.1001/jama.290.15.2015

    Article  CAS  PubMed  Google Scholar 

  24. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18(10):1208–1246. https://doi.org/10.1089/ars.2011.4498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Launer LJ (2015) Preventing Alzheimer’s disease is difficult. Lancet Neurol 14(9):872–874. https://doi.org/10.1016/S1474-4422(15)00193-3

    Article  PubMed  Google Scholar 

  26. ACOG Committee Opinion No. 650: Physical activity and exercise during pregnancy and the postpartum period (2015) Obstet Gynecol 126 (6):e135–e142. https://doi.org/10.1097/AOG.0000000000001214

  27. Labonte-Lemoyne E, Curnier D, Ellemberg D (2016) Exercise during pregnancy enhances cerebral maturation in the newborn: a randomized controlled trial. J Clin Exp Neuropsychol 39:1–8. https://doi.org/10.1080/13803395.2016.1227427

    Article  Google Scholar 

  28. Jukic AM, Lawlor DA, Juhl M, Owe KM, Lewis B, Liu J, Wilcox AJ, Longnecker MP (2013) Physical activity during pregnancy and language development in the offspring. Paediatr Perinat Epidemiol 27(3):283–293. https://doi.org/10.1111/ppe.12046

    Article  PubMed Central  PubMed  Google Scholar 

  29. Akhavan MM, Emami-Abarghoie M, Safari M, Sadighi-Moghaddam B, Vafaei AA, Bandegi AR, Rashidy-Pour A (2008) Serotonergic and noradrenergic lesions suppress the enhancing effect of maternal exercise during pregnancy on learning and memory in rat pups. Neuroscience 151(4):1173–1183. https://doi.org/10.1016/j.neuroscience.2007.10.051

    Article  CAS  PubMed  Google Scholar 

  30. Bick-Sander A, Steiner B, Wolf SA, Babu H, Kempermann G (2006) Running in pregnancy transiently increases postnatal hippocampal neurogenesis in the offspring. Proc Natl Acad Sci U S A 103(10):3852–3857. https://doi.org/10.1073/pnas.0502644103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kim H, Lee SH, Kim SS, Yoo JH, Kim CJ (2007) The influence of maternal treadmill running during pregnancy on short-term memory and hippocampal cell survival in rat pups. Int J Dev Neurosci 25(4):243–249. https://doi.org/10.1016/j.ijdevneu.2007.03.003

    Article  PubMed  Google Scholar 

  32. Marcelino TB, de Lemos Rodrigues PI, Klein CP, Santos BG, Miguel PM, Netto CA, Silva LO, Matte C (2016) Behavioral benefits of maternal swimming are counteracted by neonatal hypoxia-ischemia in the offspring. Behav Brain Res 312:30–38. https://doi.org/10.1016/j.bbr.2016.06.009

    Article  PubMed  Google Scholar 

  33. Robinson AM, Bucci DJ (2012) Maternal exercise and cognitive functions of the offspring. Cogn Sci 7(2):187–205

    Google Scholar 

  34. Marcelino TB, Longoni A, Kudo KY, Stone V, Rech A, de Assis AM, Scherer EB, da Cunha MJ et al (2013) Evidences that maternal swimming exercise improves antioxidant defenses and induces mitochondrial biogenesis in the brain of young Wistar rats. Neuroscience 246:28–39. https://doi.org/10.1016/j.neuroscience.2013.04.043

    Article  CAS  PubMed  Google Scholar 

  35. Robinson AM, Bucci DJ (2014) Physical exercise during pregnancy improves object recognition memory in adult offspring. Neuroscience 256:53–60. https://doi.org/10.1016/j.neuroscience.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  36. Gluckman PD, Hanson MA (2004) Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 56(3):311–317. https://doi.org/10.1203/01.PDR.0000135998.08025.FB

    Article  PubMed  Google Scholar 

  37. Heindel JJ, Balbus J, Birnbaum L, Brune-Drisse MN, Grandjean P, Gray K, Landrigan PJ, Sly PD et al (2015) Developmental origins of health and disease: integrating environmental influences. Endocrinology 156(10):3416–3421. https://doi.org/10.1210/EN.2015-1394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bale TL (2015) Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci 16(6):332–344. https://doi.org/10.1038/nrn3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bateson P, Gluckman P, Hanson M (2014) The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol 592(11):2357–2368. https://doi.org/10.1113/jphysiol.2014.271460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Herring A, Donath A, Yarmolenko M, Uslar E, Conzen C, Kanakis D, Bosma C, Worm K et al (2012) Exercise during pregnancy mitigates Alzheimer-like pathology in mouse offspring. FASEB J 26(1):117–128. https://doi.org/10.1096/fj.11-193193

    Article  CAS  PubMed  Google Scholar 

  41. Stanford KI, Lee MY, Getchell KM, So K, Hirshman MF, Goodyear LJ (2015) Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes 64(2):427–433. https://doi.org/10.2337/db13-1848

    Article  CAS  PubMed  Google Scholar 

  42. Wasinski F, Bacurau RF, Estrela GR, Klempin F, Arakaki AM, Batista RO, Mafra FF, do Nascimento LF et al (2015) Exercise during pregnancy protects adult mouse offspring from diet-induced obesity. Nutr Metab (Lond) 12:56. https://doi.org/10.1186/s12986-015-0052-z

    Article  CAS  Google Scholar 

  43. Ribeiro TA, Tofolo LP, Martins IP, Pavanello A, de Oliveira JC, Prates KV, Miranda RA, da Silva Franco CC et al (2017) Maternal low intensity physical exercise prevents obesity in offspring rats exposed to early overnutrition. Sci Rep 7(1):7634. https://doi.org/10.1038/s41598-017-07395-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Sheldon RD, Nicole Blaize A, Fletcher JA, Pearson KJ, Donkin SS, Newcomer SC, Rector RS (2016) Gestational exercise protects adult male offspring from high-fat diet-induced hepatic steatosis. J Hepatol 64(1):171–178. https://doi.org/10.1016/j.jhep.2015.08.022

    Article  PubMed  Google Scholar 

  45. Camarillo IG, Clah L, Zheng W, Zhou X, Larrick B, Blaize N, Breslin E, Patel N et al (2014) Maternal exercise during pregnancy reduces risk of mammary tumorigenesis in rat offspring. Eur J Cancer Prev 23(6):502–505. https://doi.org/10.1097/CEJ.0000000000000029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Mottola MF (2016) Components of exercise prescription and pregnancy. Clin Obstet Gynecol 59(3):552–558. https://doi.org/10.1097/GRF.0000000000000207

    Article  PubMed  Google Scholar 

  47. Katz VL (2003) Exercise in water during pregnancy. Clin Obstet Gynecol 46(2):432–441

    Article  PubMed  Google Scholar 

  48. Lee HH, Kim H, Lee JW, Kim YS, Yang HY, Chang HK, Lee TH, Shin MC et al (2006) Maternal swimming during pregnancy enhances short-term memory and neurogenesis in the hippocampus of rat pups. Brain and Development 28(3):147–154. https://doi.org/10.1016/j.braindev.2005.05.007

    Article  PubMed  Google Scholar 

  49. Klein WL (2002) Abeta toxicity in Alzheimer's disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41(5):345–352

    Article  CAS  PubMed  Google Scholar 

  50. Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, Pires ES, Beck RC et al (2013) Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: involvement of BDNF and Akt/GSK-3beta signaling pathway. Neurobiol Learn Mem 106:134–144. https://doi.org/10.1016/j.nlm.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  51. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press

  52. Xu S, Guan Q, Wang C, Wei X, Chen X, Zheng B, An P, Zhang J et al (2014) Rosiglitazone prevents the memory deficits induced by amyloid-beta oligomers via inhibition of inflammatory responses. Neurosci Lett 578:7–11. https://doi.org/10.1016/j.neulet.2014.06.010

    Article  CAS  PubMed  Google Scholar 

  53. Gould TD, Dao DT, Kovacsics CE (2009) The open field test. In: Gould TD (ed) Mood and anxiety related phenotypes in mice: characterization using behavioral tests. Humana Press, Totowa, pp. 1–20. https://doi.org/10.1007/978-1-60761-303-9_1

    Chapter  Google Scholar 

  54. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31(1):47–59

    Article  CAS  PubMed  Google Scholar 

  55. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. https://doi.org/10.1038/nprot.2006.116

    Article  PubMed Central  PubMed  Google Scholar 

  56. Nicholls DG, Brand MD, Gerencser AA (2015) Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals. J Bioenerg Biomembr 47(1–2):63–74. https://doi.org/10.1007/s10863-014-9573-9

    Article  CAS  PubMed  Google Scholar 

  57. Netto CA, Dias RD, Izquierdo I (1986) Differential effect of posttraining naloxone, beta-endorphin, leu-enkephalin and electroconvulsive shock administration upon memory of an open-field habituation and of a water-finding task. Psychoneuroendocrinology 11(4):437–446

    Article  CAS  PubMed  Google Scholar 

  58. Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7(6):752–758. https://doi.org/10.1038/jcbfm.1987.130

    Article  CAS  PubMed  Google Scholar 

  59. Grings M, Moura AP, Parmeggiani B, Motta MM, Boldrini RM, August PM, Matte C, Wyse AT et al (2016) Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats. Biochim Biophys Acta 1862(11):2063–2074. https://doi.org/10.1016/j.bbadis.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  60. Lai JC, Cooper AJ (1986) Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors. J Neurochem 47(5):1376–1386

    Article  CAS  PubMed  Google Scholar 

  61. Tretter L, Adam-Vizi V (2004) Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J Neurosci 24(36):7771–7778. https://doi.org/10.1523/JNEUROSCI.1842-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rustin P, Chretien D, Bourgeron T, Gerard B, Rotig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228(1):35–51

    Article  CAS  PubMed  Google Scholar 

  63. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    CAS  PubMed  Google Scholar 

  64. Clarke JR, Cammarota M, Gruart A, Izquierdo I, Delgado-Garcia JM (2010) Plastic modifications induced by object recognition memory processing. Proc Natl Acad Sci U S A 107(6):2652–2657. https://doi.org/10.1073/pnas.0915059107

    Article  PubMed Central  PubMed  Google Scholar 

  65. Zhang L, Fang Y, Lian Y, Chen Y, Wu T, Zheng Y, Zong H, Sun L et al (2015) Brain-derived neurotrophic factor ameliorates learning deficits in a rat model of Alzheimer’s disease induced by abeta1-42. PLoS One 10(4):e0122415. https://doi.org/10.1371/journal.pone.0122415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Zussy C, Brureau A, Keller E, Marchal S, Blayo C, Delair B, Ixart G, Maurice T et al (2013) Alzheimer’s disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-beta peptide injection in rats. PLoS One 8(1):e53117. https://doi.org/10.1371/journal.pone.0053117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Liu J, Chang L, Roselli F, Almeida OF, Gao X, Wang X, Yew DT, Wu Y (2010) Amyloid-beta induces caspase-dependent loss of PSD-95 and synaptophysin through NMDA receptors. J Alzheimer's Dis 22(2):541–556. https://doi.org/10.3233/JAD-2010-100948

    Article  CAS  Google Scholar 

  68. Sebollela A, Freitas-Correa L, Oliveira FF, Paula-Lima AC, Saraiva LM, Martins SM, Mota LD, Torres C et al (2012) Amyloid-beta oligomers induce differential gene expression in adult human brain slices. J Biol Chem 287(10):7436–7445. https://doi.org/10.1074/jbc.M111.298471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106(8):2770–2775. https://doi.org/10.1073/pnas.0807694106

    Article  PubMed Central  PubMed  Google Scholar 

  70. Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14(2):45–53. https://doi.org/10.1016/j.molmed.2007.12.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80(1):91–100

    Article  CAS  PubMed  Google Scholar 

  72. Selkoe DJ (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113. https://doi.org/10.1016/j.bbr.2008.02.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK (2012) Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 37(8):1601–1614. https://doi.org/10.1007/s11064-012-0755-8

    Article  CAS  PubMed  Google Scholar 

  74. Burgess N, Maguire EA, O'Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35(4):625–641

    Article  CAS  PubMed  Google Scholar 

  75. Lee AC, Rahman S, Hodges JR, Sahakian BJ, Graham KS (2003) Associative and recognition memory for novel objects in dementia: implications for diagnosis. Eur J Neurosci 18(6):1660–1670

    Article  PubMed  Google Scholar 

  76. Wenk GL (2004) Assessment of spatial memory using the radial arm maze and Morris water maze. Curr Protoc Neurosci Chapter 8:Unit 8 5A. https://doi.org/10.1002/0471142301.ns0805as26

    Article  PubMed  Google Scholar 

  77. Wenk GL (2001) Assessment of spatial memory using the T maze. Curr Protoc Neurosci Chapter 8:Unit 8 5B. https://doi.org/10.1002/0471142301.ns0805bs04

  78. Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  79. Guo Y, Zhao Y, Nan Y, Wang X, Chen Y, Wang S (2017) (-)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport 28(10):590–597. https://doi.org/10.1097/WNR.0000000000000803

    Article  CAS  PubMed  Google Scholar 

  80. Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20(23):4515–4529. https://doi.org/10.1093/hmg/ddr381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6):873–887. https://doi.org/10.1016/j.cell.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  82. Cai Q, Tammineni P (2016) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimer's Dis 57:1087–1103. https://doi.org/10.3233/JAD-160726

    Article  CAS  Google Scholar 

  83. Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587–597. https://doi.org/10.1016/j.tins.2013.07.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Zhang L, Trushin S, Christensen TA, Bachmeier BV, Gateno B, Schroeder A, Yao J, Itoh K et al (2016) Altered brain energetics induces mitochondrial fission arrest in Alzheimer’s disease. Sci Rep 6:18725. https://doi.org/10.1038/srep18725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Vissing J, Andersen M, Diemer NH (1996) Exercise-induced changes in local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 16(4):729–736. https://doi.org/10.1097/00004647-199607000-00025

    Article  CAS  PubMed  Google Scholar 

  86. Marques-Aleixo I, Oliveira PJ, Moreira PI, Magalhaes J, Ascensao A (2012) Physical exercise as a possible strategy for brain protection: evidence from mitochondrial-mediated mechanisms. Prog Neurobiol 99(2):149–162. https://doi.org/10.1016/j.pneurobio.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  87. Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44(2):153–159. https://doi.org/10.1016/j.freeradbiomed.2007.01.029

    Article  CAS  PubMed  Google Scholar 

  88. Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10(2):187–198. https://doi.org/10.1016/S1474-4422(10)70277-5

    Article  CAS  PubMed  Google Scholar 

  89. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57(5):695–703. https://doi.org/10.1002/ana.20474

    Article  CAS  PubMed  Google Scholar 

  90. Demetrius LA, Magistretti PJ, Pellerin L (2014) Alzheimer’s disease: the amyloid hypothesis and the Inverse Warburg effect. Front Physiol 5:522. https://doi.org/10.3389/fphys.2014.00522

    Article  PubMed  Google Scholar 

  91. Klupp E, Forster S, Grimmer T, Tahmasian M, Yakushev I, Sorg C, Yousefi BH, Drzezga A (2014) In Alzheimer’s disease, hypometabolism in low-amyloid brain regions may be a functional consequence of pathologies in connected brain regions. Brain Connect 4(5):371–383. https://doi.org/10.1089/brain.2013.0212

    Article  PubMed  Google Scholar 

  92. Flippo KH, Strack S (2017) Mitochondrial dynamics in neuronal injury, development and plasticity. J Cell Sci 130(4):671–681. https://doi.org/10.1242/jcs.171017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet 20(13):2495–2509. https://doi.org/10.1093/hmg/ddr139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Reddy PH (2009) Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 218(2):286–292. https://doi.org/10.1016/j.expneurol.2009.03.042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Barnes SK, Ozanne SE (2011) Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol 106(1):323–336. https://doi.org/10.1016/j.pbiomolbio.2010.12.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Mariana Maier Gaelzer and Fabrício Figueiró for their valuable assistance in flow cytometry analyses.

Funding

This study was supported by the Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS). CPK is a PhD Postgraduate student in Biological Sciences – Biochemistry receiving grants from the Brazilian agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). CM received grants from CNPq (Universal 442406/2014-2 and INCT 465671/2014-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiane Matté.

Ethics declarations

All experimental procedures were approved by the local Ethics Commission on the Use of Animals (Comissão de Ética no Uso de Animais - CEUA/UFRGS) under the protocol number 27349 and were performed in accordance with the National Animal Rights Regulations (Law 11.794/2008), the American National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH publication No. 80-23, revised 1996), and the Directive 2010/63/EU.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, C.P., Hoppe, J.B., Saccomori, A.B. et al. Physical Exercise During Pregnancy Prevents Cognitive Impairment Induced by Amyloid-β in Adult Offspring Rats. Mol Neurobiol 56, 2022–2038 (2019). https://doi.org/10.1007/s12035-018-1210-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1210-x

Keywords

Navigation