Skip to main content

Advertisement

Log in

Cellular and Molecular Aspects of Parkinson Treatment: Future Therapeutic Perspectives

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a neurodegenerative disorder accompanied by depletion of dopamine and loss of dopaminergic neurons in the brain that is believed to be responsible for the motor and non-motor symptoms in this disease. The main drug prescribed for Parkinsonian patients is l-dopa, which can be converted to dopamine by passing through the blood-brain barrier. Although l-dopa is able to improve motor function and improve the quality of life in the patients, there is inter-individual variability and some patients do not achieve the therapeutic effect. Variations in treatment response and side effects of current drugs have convinced scientists to think of treating Parkinson’s disease at the cellular and molecular level. Molecular and cellular therapy for Parkinson’s disease include (i) cell transplantation therapy with human embryonic stem (ES) cells, human induced pluripotent stem (iPS) cells and human fetal mesencephalic tissue, (ii) immunological and inflammatory therapy which is done using antibodies, and (iii) gene therapy with AADC-TH-GCH gene therapy, viral vector-mediated gene delivery, RNA interference-based therapy, CRISPR-Cas9 gene editing system, and alternative methods such as optogenetics and chemogenetics. Although these methods currently have a series of challenges, they seem to be promising techniques for Parkinson’s treatment in future. In this study, these prospective therapeutic approaches are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    PubMed  Google Scholar 

  2. Marin B, Couratier P, Lannuzel A, Logroscino G (2018) Other neurocognitive disorders in tropical health (amyotrophic lateral sclerosis and Parkinson’s disease). In: Neuroepidemiology in tropical health. Elsevier, pp. 167–183

  3. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124

    PubMed  PubMed Central  Google Scholar 

  4. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M (1998) α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci 95(11):6469–6473

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Obeso J, Stamelou M, Goetz C, Poewe W, Lang A, Weintraub D, Burn D, Halliday G et al (2017) Past, present, and future of Parkinson's disease: a special essay on the 200th anniversary of the Shaking Palsy. Mov Disord 32(9):1264–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Invest 115(6):1449–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Davie CA (2008) A review of Parkinson's disease. Br Med Bull 86(1):109–127

    CAS  PubMed  Google Scholar 

  8. Hauser RA, Lew MF, Hurtig HI, Ondo WG, Wojcieszek J, Fitzer-Attas CJ, Group TOlS (2009) Long-term outcome of early versus delayed rasagiline treatment in early Parkinson’s disease. Mov Disord 24(4):564–573

    PubMed  Google Scholar 

  9. Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Translational Neurodegeneration 6(1):28

    PubMed  PubMed Central  Google Scholar 

  10. Pont-Sunyer C, Hotter A, Gaig C, Seppi K, Compta Y, Katzenschlager R, Mas N, Hofeneder D et al (2015) The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD study). Mov Disord 30(2):229–237

    PubMed  Google Scholar 

  11. Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P et al (2015) Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord 30(7):919–927

    PubMed  PubMed Central  Google Scholar 

  12. Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson’s disease. J Neurochem 139(S1):318–324

    CAS  PubMed  Google Scholar 

  13. Alam M, Schmidt W (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324

    CAS  PubMed  Google Scholar 

  14. Hoang QQ (2014) Pathway for Parkinson disease. Proc Natl Acad Sci 111(7):2402–2403

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gibb W, Lees A (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson's disease. J Neurol Neurosurg Psychiatry 51(6):745–752

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, Bouzrou M, Grinberg LT et al (2015) The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol 25(2):121–135

    PubMed  Google Scholar 

  17. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9(1):13–24

    CAS  PubMed  Google Scholar 

  18. Oertel W, Schulz JB (2016) Current and experimental treatments of Parkinson disease: a guide for neuroscientists. J Neurochem 139(S1):325–337

    CAS  PubMed  Google Scholar 

  19. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    CAS  PubMed  Google Scholar 

  20. Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 13:24–34

    PubMed  Google Scholar 

  21. Yang YX, Wood NW, Latchman DS (2009) Molecular basis of Parkinson’s disease. Neuroreport 20(2):150–156

    CAS  PubMed  Google Scholar 

  22. Jain S, Wood NW, Healy DG (2005) Molecular genetic pathways in Parkinson’s disease: a review. Clin Sci 109(4):355–364

    CAS  Google Scholar 

  23. Warner TT, Schapira AH (2003) Genetic and environmental factors in the cause of Parkinson’s disease. Ann Neurol 53(S3):S16–S25

    CAS  PubMed  Google Scholar 

  24. Delamarre A, Meissner WG (2017) Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Med 46(2):175–181

    PubMed  Google Scholar 

  25. Kalinderi K, Bostantjopoulou S, Fidani L (2016) The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol Scand 134(5):314–326

    CAS  PubMed  Google Scholar 

  26. Tambasco N, Nigro P, Romoli M, Prontera P, Simoni S, Calabresi P (2016) A53T in a parkinsonian family: a clinical update of the SNCA phenotypes. J Neural Transm 123(11):1301–1307

    CAS  PubMed  Google Scholar 

  27. Mastrangelo L (2017) The genetics of Parkinson disease. In: Adv Genet, vol 98. Elsevier, pp 43–62

  28. Reichmann H (2016) Modern treatment in Parkinson’s disease, a personal approach. J Neural Transm 123(1):73–80

    PubMed  Google Scholar 

  29. Peschanski M, Defer G, N'guyen J, Ricolfi F, Monfort J, Remy P, Geny C, Samson Y et al (1994) Bilateral motor improvement and alteration of l-dopa effect in two patients with Parkinson’s disease following intrastriatal transplantation of foetal ventral mesencephalon. Brain 117(3):487–499

    PubMed  Google Scholar 

  30. Goetz CG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord 20(5):523–539

    PubMed  Google Scholar 

  31. Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. Jama 311(16):1670–1683

    PubMed  Google Scholar 

  32. Chan AK, McGovern RA, Brown LT, Sheehy JP, Zacharia BE, Mikell CB, Bruce SS, Ford B et al (2014) Disparities in access to deep brain stimulation surgery for Parkinson disease: interaction between African American race and Medicaid use. JAMA Neurol 71(3):291–299

    PubMed  Google Scholar 

  33. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Parkinson disease. Nature reviews. Disease Primers 3:17013

    PubMed  Google Scholar 

  34. Pinna A, Bonaventura J, Farré D, Sánchez M, Simola N, Mallol J, Lluís C, Costa G et al (2014) L-DOPA disrupts adenosine A2A–cannabinoid CB1–dopamine D2 receptor heteromer cross-talk in the striatum of hemiparkinsonian rats: biochemical and behavioral studies. Exp Neurol 253:180–191

    CAS  PubMed  Google Scholar 

  35. Cools R, Barker RA, Sahakian BJ, Robbins TW (2003) l-Dopa medication remediates cognitive inflexibility, but increases impulsivity in patients with Parkinson’s disease. Neuropsychologia 41(11):1431–1441

    PubMed  Google Scholar 

  36. Hornykiewicz O (1975) The mechanisms of action of l-dopa in Parkinson’s disease. In: Minireviews of the neurosciences from life sciences. Elsevier, pp. 421–431

  37. Wade LA, Katzman R (1975) 3-0-Methyldopa uptake and inhibition of l-dopa at the blood-brain barrier. Life Sci 17(1):131–136

    CAS  PubMed  Google Scholar 

  38. Godwin-Austen R, Frears C, Tomlinson E, Kok H (1969) Effects of l-dopa in Parkinson’s disease. Lancet 294(7613):165–168

    Google Scholar 

  39. Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242

    PubMed  PubMed Central  Google Scholar 

  40. Mazo NA, Echeverria V, Cabezas R, Avila-Rodriguez M, Tarasov VV, Yarla NS, Aliev G, Barreto GE (2017) Medicinal plants as protective strategies against Parkinson’s disease. Curr Pharm Des 23(28):4180–4188. https://doi.org/10.2174/1381612823666170316142803

    Article  CAS  PubMed  Google Scholar 

  41. Santos G, Giraldez-Alvarez LD, Avila-Rodriguez M, Capani F, Galembeck E, Neto AG, Barreto GE, Andrade B (2016) SUR1 receptor interaction with hesperidin and linarin predicts possible mechanisms of action of valeriana officinalis in Parkinson. Front Aging Neurosci 8:97. https://doi.org/10.3389/fnagi.2016.00097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jurado-Coronel JC, Avila-Rodriguez M, Echeverria V, Hidalgo OA, Gonzalez J, Aliev G, Barreto GE (2016) Implication of green tea as a possible therapeutic approach for Parkinson disease. CNS Neurol Disord Drug Targets 15(3):292–300

    CAS  PubMed  Google Scholar 

  43. Sutachan JJ, Casas Z, Albarracin SL, Stab BR 2nd, Samudio I, Gonzalez J, Morales L, Barreto GE (2012) Cellular and molecular mechanisms of antioxidants in Parkinson’s disease. Nutr Neurosci 15(3):120–126. https://doi.org/10.1179/1476830511Y.0000000033

    Article  CAS  PubMed  Google Scholar 

  44. Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, Gonzalo L, Capani F et al (2012) Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 15(1):1–9. https://doi.org/10.1179/1476830511Y.0000000028

    Article  CAS  PubMed  Google Scholar 

  45. de Oliveria DM, Barreto G, De Andrade DV, Saraceno E, Aon-Bertolino L, Capani F, Dos Santos El Bacha R, Giraldez LD (2009) Cytoprotective effect of Valeriana officinalis extract on an in vitro experimental model of Parkinson disease. Neurochem Res 34(2):215–220. https://doi.org/10.1007/s11064-008-9749-y

    Article  CAS  PubMed  Google Scholar 

  46. Valverde GDAD, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, Giraldez LD (2008) Effects of the extract of Anemopaegma mirandum (Catuaba) on rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res 1198:188–196. https://doi.org/10.1016/j.brainres.2008.01.006

    Article  CAS  Google Scholar 

  47. Solayman M, Islam M, Alam F, Ibrahim Khalil M, Amjad Kamal M, Hua Gan S (2017) Natural products combating neurodegeneration: Parkinson’s disease. Curr Drug Metab 18(1):50–61

    CAS  PubMed  Google Scholar 

  48. Ríos J-L, Onteniente M, Picazo D, Montesinos M-C (2016) Medicinal plants and natural products as potential sources for antiparkinson drugs. Planta Med 82(11/12):942–951

    PubMed  Google Scholar 

  49. Zhang H, Bai L, He J, Zhong L, Duan X, Ouyang L, Zhu Y, Zhang Y et al (2017) Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Eur J Med Chem 141:257–272

    CAS  PubMed  Google Scholar 

  50. Areiza-Mazo N, Robles J, Zamudio-Rodriguez JA, Giraldez L, Echeverria V, Barrera-Bailon B, Aliev G, Sahebkar A et al (2018) Extracts of Physalis peruviana protect astrocytic cells under oxidative stress with rotenone. Front Chem 6:276. https://doi.org/10.3389/fchem.2018.00276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Backlund E-O, Granberg P-O, Hamberger B, Knutsson E, Mårtensson A, Sedvall G, Seiger Å, Olson L (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism: first clinical trials. J Neurosurg 62(2):169–173

    CAS  PubMed  Google Scholar 

  52. Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger Å et al (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 22(4):457–468

    CAS  PubMed  Google Scholar 

  53. Freed CR, Greene PE, Breeze RE, Tsai W-Y, DuMouchel W, Kao R, Dillon S, Winfield H et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344(10):710–719

    CAS  PubMed  Google Scholar 

  54. Lindvall O (2015) Treatment of Parkinson’s disease using cell transplantation. Philos Trans R Soc B 370(1680):20140370

    Google Scholar 

  55. Kim J-H, Auerbach JM, Rodríguez-Gómez JA, Velasco I, Gavin D, Lumelsky N, Lee S-H, Nguyen J et al (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418(6893):50–56

    CAS  PubMed  Google Scholar 

  56. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    CAS  PubMed  Google Scholar 

  57. Kim H-J (2011) Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta (BBA) – Mol Basis Dis 1812(1):1–11

    CAS  Google Scholar 

  58. Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1(6):703–714

    CAS  PubMed  Google Scholar 

  59. Fu M-H, Li C-L, Lin H-L, Chen P-C, Calkins MJ, Chang Y-F, Cheng P-H, Yang S-H (2015) Stem cell transplantation therapy in Parkinson’s disease. SpringerPlus 4(1):597

    PubMed  PubMed Central  Google Scholar 

  60. Oh SM, Chang MY, Song JJ, Rhee YH, Joe EH, Lee HS, Yi SH, Lee SH (2015) Combined Nurr1 and Foxa2 roles in the therapy of Parkinson’s disease. EMBO Mol Med e201404610

  61. Roybon L, Christophersen NS, Brundin P, Li J-Y (2004) Stem cell therapy for Parkinson’s disease: where do we stand? Cell Tissue Res 318(1):261–273

    PubMed  Google Scholar 

  62. Zhang S-C, Li X-J, Johnson MA, Pankratz MT (2008) Human embryonic stem cells for brain repair? Philos Trans R Soc Lond B Biol Sci 363(1489):87–99

    PubMed  Google Scholar 

  63. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G et al (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480(7378):547–551

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fitzpatrick KM, Raschke J, Emborg ME (2009) Cell-based therapies for Parkinson’s disease: past, present, and future. Antioxid Redox Signal 11(9):2189–2208

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, Van Camp N, Perrier AL et al (2014) Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 15(5):653–665

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Turner M, Leslie S, Martin NG, Peschanski M, Rao M, Taylor CJ, Trounson A, Turner D et al (2013) Toward the development of a global induced pluripotent stem cell library. Cell Stem Cell 13(4):382–384

    CAS  PubMed  Google Scholar 

  67. Gurdon JB (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Development 10(4):622–640

    CAS  Google Scholar 

  68. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    CAS  PubMed  Google Scholar 

  69. Parmar M, Torper O, Drouin-Ouellet J (2018) Cell-based therapy for Parkinson’s disease: a journey through decades towards the light side of the force. Eur J Neurosci

  70. Masserdotti G, Gascón S, Götz M (2016) Direct neuronal reprogramming: learning from and for development. Development 143(14):2494–2510

    CAS  PubMed  Google Scholar 

  71. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O et al (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 108(25):10343–10348

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, Sundberg M, Moore MA et al (2015) Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 16(3):269–274

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Sekiguchi K, Nakagawa M et al (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350

    CAS  Google Scholar 

  74. Kikuchi T, Morizane A, Onoe H, Hayashi T, Kawasaki T, Saiki H, Miyamoto S, Takahashi J (2011) Survival of human induced pluripotent stem cell–derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinson’s Disease 1(4):395–412

    CAS  Google Scholar 

  75. Sundberg M, Bogetofte H, Lawson T, Jansson J, Smith G, Astradsson A, Moore M, Osborn T et al (2013) Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 31(8):1548–1562

    CAS  PubMed  Google Scholar 

  76. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S et al (2017) Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548(7669):592–596

    CAS  PubMed  Google Scholar 

  77. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11(2):147–152

    CAS  PubMed  Google Scholar 

  78. Marro S, Pang ZP, Yang N, Tsai M-C, Qu K, Chang HY, Südhof TC, Wernig M (2011) Direct lineage conversion of terminally differentiated hepatocytes to functional neurons. Cell Stem Cell 9(4):374–382

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lindvall O (2013) Developing dopaminergic cell therapy for Parkinson’s disease—give up or move forward? Mov Disord 28(3):268–273

    CAS  PubMed  Google Scholar 

  80. González C, Bonilla S, Isabel Flores A, Cano E, Liste I (2016) An update on human stem cell-based therapy in Parkinson’s disease. Curr Stem Cell Res Ther 11(7):561–568

    PubMed  Google Scholar 

  81. Barker RA, Barrett J, Mason SL, Björklund A (2013) Fetal dopaminergic transplantation trials and the future of neural grafting in Parkinson’s disease. Lancet Neurol 12(1):84–91

    CAS  PubMed  Google Scholar 

  82. Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    PubMed  Google Scholar 

  83. Spencer DD, Robbins RJ, Naftolin F, Marek KL, Vollmer T, Leranth C, Roth RH, Price LH et al (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson’s disease. N Engl J Med 327(22):1541–1548

    CAS  PubMed  Google Scholar 

  84. Lindvall O, Sawle G, Widner H, Rothwell JC, Björklund A, Brooks D, Brundin P, Frackowiak R et al (1994) Evidence for long-term survival and function of dopaminergic grafts in progressive Parkinson’s disease. Ann Neurol 35(2):172–180

    CAS  PubMed  Google Scholar 

  85. Piccini P, Brooks DJ, Björklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P et al (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2(12):1137–1140

    CAS  PubMed  Google Scholar 

  86. Hallett PJ, Cooper O, Sadi D, Robertson H, Mendez I, Isacson O (2014) Long-term health of dopaminergic neuron transplants in Parkinson’s disease patients. Cell Rep 7(6):1755–1761

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hagell P, Piccini P, Björklund A, Brundin P, Rehncrona S, Widner H, Crabb L, Pavese N et al (2002) Dyskinesias following neural transplantation in Parkinson’s disease. Nat Neurosci 5(7):627–628

    CAS  PubMed  Google Scholar 

  88. Freed CR, Zhou W, Breeze RE (2011) Dopamine cell transplantation for Parkinson’s disease: the importance of controlled clinical trials. Neurotherapeutics 8(4):549–561

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Carta M, Carlsson T, Muñoz A, Kirik D, Björklund A (2008) Serotonin–dopamine interaction in the induction and maintenance of l-DOPA-induced dyskinesias. Prog Brain Res 172:465–478

    CAS  PubMed  Google Scholar 

  90. Politis M, Wu K, Loane C, Turkheimer F, Molloy S, Brooks D, Piccini P (2010) Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 75(21):1920–1927

    CAS  PubMed  Google Scholar 

  91. Rath A, Klein A, Papazoglou A, Pruszak J, Garcia J, Krause M, Maciaczyk J, Dunnett SB et al (2013) Survival and functional restoration of human fetal ventral mesencephalon following transplantation in a rat model of Parkinson’s disease. Cell Transplant 22(7):1281–1293

    PubMed  Google Scholar 

  92. Parashar A, Udayabanu M (2017) Gut microbiota: Implications in Parkinson’s disease. Parkinsonism Relat Disord 38:1–7

    PubMed  PubMed Central  Google Scholar 

  93. Marizzoni M, Provasi S, Cattaneo A, Frisoni GB (2017) Microbiota and neurodegenerative diseases. Curr Opin Neurol 30(6):630–638

    PubMed  Google Scholar 

  94. Aono H, Choudhury ME, Higaki H, Miyanishi K, Kigami Y, Fujita K, Ji A, Takahashi H et al (2017) Microglia may compensate for dopaminergic neuron loss in experimental Parkinsonism through selective elimination of glutamatergic synapses from the subthalamic nucleus. Glia 65(11):1833–1847

    PubMed  Google Scholar 

  95. Blaylock RL (2017) Parkinson’s disease: microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 8:65

    PubMed  PubMed Central  Google Scholar 

  96. Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C et al (2017) Erratum: T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 549(7671):292

    CAS  PubMed  Google Scholar 

  97. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Holmans P, Moskvina V, Jones L, Sharma M, Consortium IPsDG, Vedernikov A, Buchel F, Sadd M et al (2012) A pathway-based analysis provides additional support for an immune-related genetic susceptibility to Parkinson’s disease. Hum Mol Genet 22(5):1039–1049

    PubMed  PubMed Central  Google Scholar 

  99. Jankovic J (2018) Immunologic treatment of Parkinson’s disease. Future Med

  100. Witoelar A, Jansen IE, Wang Y, Desikan RS, Gibbs JR, Blauwendraat C, Thompson WK, Hernandez DG et al (2017) Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol 74(7):780–792

    PubMed  PubMed Central  Google Scholar 

  101. Li C, Guo Y, Xie W, Li X, Janokovic J, Le W (2010) Neuroprotection of pramipexole in UPS impairment induced animal model of Parkinson’s disease. Neurochem Res 35(10):1546–1556

    CAS  PubMed  Google Scholar 

  102. Dehay B, Decressac M, Bourdenx M, Guadagnino I, Fernagut PO, Tamburrino A, Bassil F, Meissner WG et al (2016) Targeting α-synuclein: therapeutic options. Mov Disord 31(6):882–888

    CAS  PubMed  Google Scholar 

  103. Lawand NB, Saadé NE, El-Agnaf OM, Safieh-Garabedian B (2015) Targeting α-synuclein as a therapeutic strategy for Parkinson’s disease. Expert Opin Ther Targets 19(10):1351–1360

    CAS  PubMed  Google Scholar 

  104. Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW et al (2015) Targeting α-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol 14(8):855–866

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Spencer B, Valera E, Rockenstein E, Overk C, Mante M, Adame A, Zago W, Seubert P et al (2017) Anti-α-synuclein immunotherapy reduces α-synuclein propagation in the axon and degeneration in a combined viral vector and transgenic model of synucleinopathy. Acta Neuropathol Commun 5(1):7

    PubMed  PubMed Central  Google Scholar 

  106. Jankovic J, Goodman I, Safirstein B, Schenk D, Kinney G, Koller M, Ness D, Griffith S et al (2018) Results from a phase 1b multiple ascending-dose study of PRX002/RG7935, an anti-alpha-synuclein monoclonal antibody, in patients with Parkinson’s disease. Parkinsonism Relat Disord 46:e25

    Google Scholar 

  107. Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, Patrick C, Ubhi K et al (2014) Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci 34(28):9441–9454

    PubMed  PubMed Central  Google Scholar 

  108. Sahin C, Lorenzen N, Lemminger L, Christiansen G, Møller IM, Vesterager LB, Pedersen LØ, Fog K et al (2017) Antibodies against the C-terminus of α-synuclein modulate its fibrillation. Biophys Chem 220:34–41

    CAS  PubMed  Google Scholar 

  109. Weihofen A, Patel H, Huy C, Liu C, Combaluzier I, Mueller-Steiner S, Cavegn N, Strobel L, Kuznetsov G, Engber T (2017) Binding and functional characterization of human-derived anti-alpha-synuclein antibody BIIB054. Neurodegener Dis

  110. Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, Zago W, Soto J, Atiee G et al (2017) First-in-human assessment of PRX002, an anti–α-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 32(2):211–218

    CAS  PubMed  Google Scholar 

  111. Mandler M, Valera E, Rockenstein E, Weninger H, Patrick C, Adame A, Santic R, Meindl S et al (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol 127(6):861–879

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Friedmann T, Roblin R (1972) Gene therapy for human genetic disease? Science 175(4025):949–955

    CAS  PubMed  Google Scholar 

  113. Axelsen TM, Woldbye DP (2018) Gene therapy for Parkinson’s disease, an update. J Parkinson's disease (Preprint) 1–21

  114. Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A, Barreto GE (2018) Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1203-9

    PubMed  Google Scholar 

  115. Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F et al (2014) Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front Cell Neurosci 8:211. https://doi.org/10.3389/fncel.2014.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cabezas R, Avila-Rodriguez M, Vega-Vela NE, Echeverria V, Gonzalez J, Hidalgo OA, Santos AB, Aliev G et al (2016) Growth factors and astrocytes metabolism: possible roles for platelet derived growth factor. Med Chem 12(3):204–210

    CAS  PubMed  Google Scholar 

  117. Cabezas R, El-Bacha RS, Gonzalez J, Barreto GE (2012) Mitochondrial functions in astrocytes: neuroprotective implications from oxidative damage by rotenone. Neurosci Res 74(2):80–90. https://doi.org/10.1016/j.neures.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  118. Coune PG, Schneider BL, Aebischer P (2012) Parkinson’s disease: gene therapies. Cold Spring Harb Perspect Med 2(4):a009431

    PubMed  PubMed Central  Google Scholar 

  119. Belin AC, Westerlund M (2008) Parkinson’s disease: a genetic perspective. FEBS J 275(7):1377–1383

    CAS  PubMed  Google Scholar 

  120. Bartus RT, Weinberg MS, Samulski RJ (2014) Parkinson’s disease gene therapy: success by design meets failure by efficacy. Mol Ther 22(3):487–497

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11(1):34

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Hutz MH, Rieder CR (2018) The future of pharmacogenetics in Parkinson's disease treatment. Future Med

  123. Azzouz M, Martin-Rendon E, Barber RD, Mitrophanous KA, Carter EE, Rohll JB, Kingsman SM, Kingsman AJ et al (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson's disease. J Neurosci 22(23):10302–10312

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, Cunningham J, Bankiewicz KS (2006) A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 14(4):571–577

    CAS  PubMed  Google Scholar 

  125. Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18(8):1458–1461

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Eberling J, Jagust W, Christine C, Starr P, Larson P, Bankiewicz K, Aminoff M (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983

    CAS  PubMed  Google Scholar 

  127. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, Kaplan PL, Forsayeth J et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23(4):377–381

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, Watts C, Miskin J et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383(9923):1138–1146

    CAS  PubMed  Google Scholar 

  129. Jarraya B, Boulet S, Ralph GS, Jan C, Bonvento G, Azzouz M, Miskin JE, Shin M et al (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1(2):2ra4–2ra4

    PubMed  Google Scholar 

  130. Muramatsu S-i (2010) The current status of gene therapy for Parkinson’s disease. Ann Neurosci 17(2):92–95

    PubMed  PubMed Central  Google Scholar 

  131. Caudle WM, Colebrooke RE, Emson PC, Miller GW (2008) Altered vesicular dopamine storage in Parkinson’s disease: a premature demise. Trends Neurosci 31(6):303–308

    CAS  PubMed  Google Scholar 

  132. Chen L, Ding Y, Cagniard B, Van Laar AD, Mortimer A, Chi W, Hastings TG, Kang UJ et al (2008) Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci 28(2):425–433

    PubMed  PubMed Central  Google Scholar 

  133. Man JH, Groenink L, Caiazzo M (2018) Cell reprogramming approaches in gene-and cell-based therapies for Parkinson’s disease. J Control Release 286:114–124

    CAS  PubMed  Google Scholar 

  134. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175

    CAS  PubMed  Google Scholar 

  135. d’Anglemont de Tassigny X, Pascual A, López-Barneo J (2015) GDNF-based therapies, GDNF-producing interneurons, and trophic support of the dopaminergic nigrostriatal pathway. Implications for Parkinson’s disease. Front Neuroanat 9:10

    PubMed  PubMed Central  Google Scholar 

  136. Kirik D, Cederfjäll E, Halliday G, Petersén Å (2017) Gene therapy for Parkinson's disease: disease modification by GDNF family of ligands. Neurobiol Dis 97:179–188

    CAS  PubMed  Google Scholar 

  137. Eberling JL, Kells AP, Pivirotto P, Beyer J, Bringas J, Federoff HJ, Forsayeth J, Bankiewicz KS (2009) Functional effects of AAV2-GDNF on the dopaminergic nigrostriatal pathway in parkinsonian rhesus monkeys. Hum Gene Ther 20(5):511–518

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Warren Olanow C, Bartus RT, Baumann TL, Factor S, Boulis N, Stacy M, Turner DA, Marks W et al (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: a double-blind, randomized, controlled trial. Ann Neurol 78(2):248–257

    CAS  PubMed  Google Scholar 

  139. Brantl S (2002) Antisense-RNA regulation and RNA interference. Biochim Biophys Acta Gene Struct Expr 1575(1–3):15–25

    CAS  Google Scholar 

  140. Agrawal N, Dasaradhi P, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev 67(4):657–685

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Häbig K, Walter M, Poths S, Riess O, Bonin M (2008) RNA interference of LRRK2–microarray expression analysis of a Parkinson’s disease key player. Neurogenetics 9(2):83–94

    PubMed  Google Scholar 

  142. Helmschrodt C, Höbel S, Schöniger S, Bauer A, Bonicelli J, Gringmuth M, Fietz SA, Aigner A et al (2017) Polyethylenimine nanoparticle-mediated siRNA delivery to reduce α-Synuclein expression in a model of Parkinson’s disease. Mol Ther Nucleic Acids 9:57–68

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu YY, Yang XY, Li Z, Liu ZL, Cheng D, Wang Y, Wen XJ, Hu JY et al (2014) Characterization of polyethylene glycol-polyethyleneimine as a vector for alpha-synuclein siRNA delivery to PC12 cells for Parkinson’s disease. CNS Neurosci Ther 20(1):76–85

    CAS  PubMed  Google Scholar 

  144. Hoepken H-H, Gispert S, Azizov M, Klinkenberg M, Ricciardi F, Kurz A, Morales-Gordo B, Bonin M et al (2008) Parkinson patient fibroblasts show increased alpha-synuclein expression. Exp Neurol 212(2):307–313

    CAS  PubMed  Google Scholar 

  145. Haussecker D (2014) Current issues of RNAi therapeutics delivery and development. J Control Release 195:49–54

    CAS  PubMed  Google Scholar 

  146. McSwiggen J, Haeberli P, Chowrira B (2004) RNA interference mediated treatment of parkinson disease using short interfering nucleic acid (siNA). Google Patents

  147. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ran FA, Hsu PD, Lin C-Y, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Basu S, Adams L, Guhathakurta S, Kim Y-S (2017) A novel tool for monitoring endogenous alpha-synuclein transcription by NanoLuciferase tag insertion at the 3′ end using CRISPR-Cas9 genome editing technique. Sci Rep 7:45883

    PubMed Central  Google Scholar 

  151. Cui Z, Renfu Q, Jinfu W (2018) Development and application of CRISPR/Cas9 technologies in genomic editing. Hum Mol Genet

  152. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K et al (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14(3):387–397

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Sanders TH, Jaeger D (2016) Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 95:225–237

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Pienaar IS, Gartside SE, Sharma P, De Paola V, Gretenkord S, Withers D, Elson JL, Dexter DT (2015) Pharmacogenetic stimulation of cholinergic pedunculopontine neurons reverses motor deficits in a rat model of Parkinson’s disease. Mol Neurodegener 10(1):47

    PubMed  PubMed Central  Google Scholar 

  156. Pienaar IS, Harrison IF, Elson JL, Bury A, Woll P, Simon AK, Dexter DT (2015) An animal model mimicking pedunculopontine nucleus cholinergic degeneration in Parkinson’s disease. Brain Struct Funct 220(1):479–500

    CAS  PubMed  Google Scholar 

  157. Lee JS, Lee S-J (2016) Mechanism of anti-α-synuclein immunotherapy. J Mov Disord 9(1):14–19

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Key Message

The new therapeutic approaches described in this study include cell transplantation, gene therapy and immunotherapy, and are promising strategies for effective PD therapy in the near horizon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamebozorgi, K., Taghizadeh, E., Rostami, D. et al. Cellular and Molecular Aspects of Parkinson Treatment: Future Therapeutic Perspectives. Mol Neurobiol 56, 4799–4811 (2019). https://doi.org/10.1007/s12035-018-1419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1419-8

Keywords

Navigation