Skip to main content
Log in

Neuropsychiatric Manifestations of Wilson Disease: Correlation with MRI and Glutamate Excitotoxicity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

This study aims to identify neuropsychiatric manifestations in neurological Wilson disease (NWD), and their correlation with MRI changes and glutamate excitotoxicity. Forty-three consecutive patients with NWD from a tertiary care teaching hospital were evaluated prospectively who fulfilled the inclusion criteria. The neuropsychiatric evaluation was done using Neuropsychiatric Inventory (NPI) battery that assesses 12 domains including delusion, hallucination, agitation/aggression, dysphoria/depression, anxiety, euphoria, apathy, disinhibition, irritability, aberrant motor activity, appetite change, and abnormal nighttime behavior. Cranial MRI was done using a 3 T machine, and locations of signal changes were noted including the total number of MRI lesions. Serum glutamate level was measured by a fluorescence microplate reader. Abnormal NPI in various domains and total NPI scores were correlated with MRI lesions, serum and urinary copper, and glutamate level. The median age of the patients was 16 years. Forty-one (48.8%) patients had cognitive impairment and 37 (86%) had movement disorder. Neurobehavioral abnormality was detected in all—commonest being agitation (90.7%) followed by appetite change (81.4%), elation (74.4%), irritability (69.8%), anxiety (67.4%), depression (65.1%), apathy (44.2%), night time abnormal behavior (32.6%), aberrant motor behavior (20.9%), delusions (16.3%), and hallucination (18.6%). The thalamic lesion was associated with depression, globus pallidus with depression and anxiety, caudate with anxiety and agitation, brainstem with irritability, and frontal cortex with apathy. Serum glutamate level was higher in NWD. NPI sum score correlated with MRI load and glutamate level. Varying severity of neurobehavioral abnormalities are common in the patients with NWD and correlate with the location of MRI lesion and glutamate level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data supporting the results of this investigation are available from the corresponding author upon request.

Abbreviations

ADL:

Activity of daily living

BFM:

Burke-Fahn-Marsden

CNS:

Central nervous system

Cu:

Copper

MRI:

Magnetic resonance imaging

MMSE:

Mini-Mental State Examination

NPI:

Neuropsychiatric Inventory

NMDA:

N-methyl-D-aspartate

WD:

Wilson disease

References

  1. Thomas GR, Forbes JR, Roberts EA, Walshe JM, Cox DW (1995) The Wilson disease gene: spectrum of mutations and their consequences. Nat Genet 9(2):210–217. https://doi.org/10.1038/ng0295-210

    Article  CAS  PubMed  Google Scholar 

  2. Ferenci P (2006) Regional distribution of mutations of the ATP7B gene in patients with Wilson disease: impact on genetic testing. Hum Genet 120(2):151–159. https://doi.org/10.1007/s00439-006-0202-5

    Article  CAS  PubMed  Google Scholar 

  3. Sandahl TD, Laursen TL, Munk DE, Vilstrup H, Weiss KH, Ott P (2020) The prevalence of Wilson’s disease: an update. Hepatology 71(2):722–732. https://doi.org/10.1002/hep.30911

    Article  PubMed  Google Scholar 

  4. Czlonkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, et al (2018) Wilson disease. Nat Rev Dis Prim 4(1):21. https://doi.org/10.1038/s41572-018-0018-3

    Article  PubMed  Google Scholar 

  5. European Association for Study of L (2012) EASL Clinical Practice Guidelines: Wilson’s disease. J Hepatol 56(3):671–685. https://doi.org/10.1016/j.jhep.2011.11.007

    Article  Google Scholar 

  6. Gow PJ, Smallwood RA, Angus PW, Smith AL, Wall AJ, Sewell RB (2000) Diagnosis of Wilson’s disease: an experience over three decades. Gut 46(3):415–419. https://doi.org/10.1136/gut.46.3.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Litwin T, Dusek P, Szafranski T, Dziezyc K, Czlonkowska A, Rybakowski JK (2018) Psychiatric manifestations in Wilson’s disease: possibilities and difficulties for treatment. Ther Adv Psychopharmacol 8(7):199–211. https://doi.org/10.1177/2045125318759461

    Article  PubMed  PubMed Central  Google Scholar 

  8. Akil M, Brewer GJ (1995) Psychiatric and behavioral abnormalities in Wilson’s disease. Adv Neurol 65:171–178

    CAS  PubMed  Google Scholar 

  9. Srinivas K, Sinha S, Taly AB, Prashanth LK, Arunodaya GR, Janardhana Reddy YC, Khanna S (2008) Dominant psychiatric manifestations in Wilson’s disease: a diagnostic and therapeutic challenge! J Neurol Sci 266(1–2):104–108. https://doi.org/10.1016/j.jns.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  10. Ranjan A, Kalita J, Kumar S, Bhoi SK, Misra UK (2015) A study of MRI changes in Wilson disease and its correlation with clinical features and outcome. Clin Neurol Neurosurg 138:31–36. https://doi.org/10.1016/j.clineuro.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  11. Yu XE, Gao S, Yang RM, Han YZ (2019) MR imaging of the brain in neurologic Wilson disease. AJNR Am J Neuroradiol 40(1):178–183. https://doi.org/10.3174/ajnr.A5936

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhong W, Huang Z, Tang X (2019) A study of brain MRI characteristics and clinical features in 76 cases of Wilson’s disease. J Clin Neurosci 59:167–174. https://doi.org/10.1016/j.jocn.2018.10.096

    Article  PubMed  Google Scholar 

  13. Prashanth LK, Sinha S, Taly AB, Vasudev MK (2010) Do MRI features distinguish Wilson’s disease from other early onset extrapyramidal disorders? An analysis of 100 cases. Mov Disord 25(6):672–678. https://doi.org/10.1002/mds.22689

    Article  CAS  PubMed  Google Scholar 

  14. Kalita J, Agarwal R, Chandra S, Misra UK (2013) A study of neurobehavioral, clinical psychometric, and P3 changes in vitamin B12 deficiency neurological syndrome. Nutr Neurosci 16(1):39–46. https://doi.org/10.1179/1476830512Y.0000000028

    Article  CAS  PubMed  Google Scholar 

  15. Nagasaka H, Takayanagi M, Tsukahara H (2009) Children's toxicology from bench to bed—liver Injury (3): oxidative stress and anti-oxidant systems in liver of patients with Wilson disease. J Toxicol Sci 34 Suppl 2:SP229–236. https://doi.org/10.2131/jts.34.sp229

  16. Kalita J, Kumar V, Misra UK (2016) A study on apoptosis and anti-apoptotic status in Wilson disease. Mol Neurobiol 53(10):6659–6667. https://doi.org/10.1007/s12035-015-9570-y

    Article  CAS  PubMed  Google Scholar 

  17. Kalita J, Kumar V, Misra UK, Bora HK (2018) Memory and learning dysfunction following copper toxicity: biochemical and immunohistochemical basis. Mol Neurobiol 55(5):3800–3811. https://doi.org/10.1007/s12035-017-0619-y

    Article  CAS  PubMed  Google Scholar 

  18. Kalita J, Kumar V, Misra UK, Bora HK (2020) Movement disorder in copper toxicity rat model: role of inflammation and apoptosis in the corpus striatum. Neurotox Res 37(4):904–912. https://doi.org/10.1007/s12640-019-00140-9

    Article  CAS  PubMed  Google Scholar 

  19. Kalita J, Kumar V, Misra UK, Kumar S (2021) Movement disorder in Wilson disease: correlation with MRI and biomarkers of cell injury. J Mol Neuros: MN 71(2):338–346. https://doi.org/10.1007/s12031-020-01654-0

    Article  CAS  PubMed  Google Scholar 

  20. Krystkowiak P, du Montcel ST, Vercueil L, Houeto JL, Lagrange C, Cornu P, Blond S, Benabid AL, et al (2007) Reliability of the Burke-Fahn-Marsden scale in a multicenter trial for dystonia. Mov Disord 22(5):685–9.https://doi.org/10.1002/mds.21392

    Article  Google Scholar 

  21. Kalita J, Misra UK, Pradhan PK (2011) Oromandibular dystonia in encephalitis. J Neurol Sci 304(1–2):107–110. https://doi.org/10.1016/j.jns.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  22. Kalita J, Misra UK, Kumar V, Parashar V (2019) Predictors of seizure in Wilson disease: a clinico-radiological and biomarkers study. Neurotoxicology 71:87–92. https://doi.org/10.1016/j.neuro.2018.12.005

    Article  PubMed  Google Scholar 

  23. Grimm G, Prayer L, Oder W, Ferenci P, Madl C, Knoflach P, Schneider B, Imhof H, et al (1991) Comparison of functional and structural brain disturbances in Wilson's disease. Neurology 41 (2 ( Pt 1)):272–276. https://doi.org/10.1212/wnl.41.2_part_1.272

  24. Wiles CM (1990) Quantification of neurologic deficit. J Neurol Neurosurg Psychiatry 53(7):628–628. https://doi.org/10.1136/jnnp.53.7.628

    Article  PubMed Central  Google Scholar 

  25. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12):2308–2314. https://doi.org/10.1212/wnl.44.12.2308

    Article  CAS  PubMed  Google Scholar 

  26. Cummings JL (1997) The neuropsychiatric inventory: assessing psychopathology in dementia patients. Neurology 48(5 Suppl 6):S10-16. https://doi.org/10.1212/wnl.48.5_suppl_6.10s

    Article  CAS  PubMed  Google Scholar 

  27. Dening TR, Berrios GE (1989) Wilson's disease. Psychiatric symptoms in 195 cases. Arch Gen Psychiatry 46 (12):1126–1134. https://doi.org/10.1001/archpsyc.1989.01810120068011

  28. Oder W, Grimm G, Kollegger H, Ferenci P, Schneider B, Deecke L (1991) Neurological and neuropsychiatric spectrum of Wilson’s disease: a prospective study of 45 cases. J Neurol 238(5):281–287. https://doi.org/10.1007/BF00319740

    Article  CAS  PubMed  Google Scholar 

  29. Svetel M, Potrebic A, Pekmezovic T, Tomic A, Kresojevic N, Jesic R, Dragasevic N, Kostic VS (2009) Neuropsychiatric aspects of treated Wilson’s disease. Parkinsonism Relat Disord 15(10):772–775. https://doi.org/10.1016/j.parkreldis.2009.01.010

    Article  PubMed  Google Scholar 

  30. Mura G, Zimbrean PC, Demelia L, Carta MG (2017) Psychiatric comorbidity in Wilson’s disease. International review of psychiatry (Abingdon, England) 29(5):445–462. https://doi.org/10.1080/09540261.2017.1311845

    Article  Google Scholar 

  31. Zimbrean PC, Schilsky ML (2014) Psychiatric aspects of Wilson disease: a review. Gen Hosp Psychiatry 36(1):53–62. https://doi.org/10.1016/j.genhosppsych.2013.08.007

    Article  PubMed  Google Scholar 

  32. Portala K, Westermark K, von Knorring L, Ekselius L (2000) Psychopathology in treated Wilson’s disease determined by means of CPRS expert and self-ratings. Acta Psychiatr Scand 101(2):104–109. https://doi.org/10.1034/j.1600-0447.2000.90085.x

    Article  CAS  PubMed  Google Scholar 

  33. Carta M, Mura G, Sorbello O, Farina G, Demelia L (2012) Quality of life and psychiatric symptoms in Wilson’s disease: the relevance of bipolar disorders. Clin Pract Epidemiol Ment Health 8:102–109. https://doi.org/10.2174/1745017901208010102

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dening TR (1985) Psychiatric aspects of Wilson’s disease. Br J Psychiatry 147(6):677–682. https://doi.org/10.1192/bjp.147.6.677

    Article  CAS  PubMed  Google Scholar 

  35. Ring HA, Serra-Mestres J (2002) Neuropsychiatry of the basal ganglia. J Neurol Neurosurg Psychiatry 72(1):12–21. https://doi.org/10.1136/jnnp.72.1.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paulsen JS, Ready RE, Hamilton JM, Mega MS, Cummings JL (2001) Neuropsychiatric aspects of Huntington’s disease. J Neurol Neurosurg Psychiatry 71(3):310–314. https://doi.org/10.1136/jnnp.71.3.310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paoli RA, Botturi A, Ciammola A, Silani V, Prunas C, Lucchiari C, Zugno E, Caletti E (2017) Neuropsychiatric burden in Huntington’s disease. Brain Sci 7(6):67. https://doi.org/10.3390/brainsci7060067

    Article  CAS  PubMed Central  Google Scholar 

  38. McColgan P, Tabrizi SJ (2018) Huntington’s disease: a clinical review. Eur J Neurol 25(1):24–34. https://doi.org/10.1111/ene.13413

    Article  CAS  PubMed  Google Scholar 

  39. Schneider RB, Iourinets J, Richard IH (2017) Parkinson’s disease psychosis: presentation, diagnosis and management. Neurodegener Dis Manag 7(6):365–376. https://doi.org/10.2217/nmt-2017-0028

    Article  PubMed  Google Scholar 

  40. Imperiale F, Agosta F, Canu E, Markovic V, Inuggi A, Jecmenica-Lukic M, Tomic A, Copetti M, et al (2018) Brain structural and functional signatures of impulsive-compulsive behaviours in Parkinson’s disease. Mol Psychiatry 23(2):459–466. https://doi.org/10.1038/mp.2017.18

    Article  CAS  PubMed  Google Scholar 

  41. Flavell J, Nestor PJ (2021) A systematic review of apathy and depression in progressive supranuclear palsy. J Geriatr Psychiatry Neurol:891988721993545. https://doi.org/10.1177/0891988721993545

  42. Jecmenica-Lukic M, Pekmezovic T, Petrovic IN, Tomic A, Svetel M, Kostic VS (2018) Use of the neuropsychiatric inventory to characterize the course of neuropsychiatric symptoms in progressive supranuclear palsy. J Neuropsychiatry Clin Neurosci 30(1):38–44. https://doi.org/10.1176/appi.neuropsych.17010012

    Article  PubMed  Google Scholar 

  43. Benke T, Karner E, Seppi K, Delazer M, Marksteiner J, Donnemiller E (2004) Subacute dementia and imaging correlates in a case of Fahr’s disease. J Neurol Neurosurg Psychiatry 75(8):1163–1165. https://doi.org/10.1136/jnnp.2003.019547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Groth C, Mol Debes N, Rask CU, Lange T, Skov L (2017) Course of tourette syndrome and comorbidities in a large prospective clinical study. J Am Acad Child Adolesc Psychiatry 56(4):304–312. https://doi.org/10.1016/j.jaac.2017.01.010

    Article  PubMed  Google Scholar 

  45. Zeidler M, Johnstone EC, Bamber RW, Dickens CM, Fisher CJ, Francis AF, Goldbeck R, Higgo R, et al (1997) New variant Creutzfeldt-Jakob disease: psychiatric features. Lancet 350(9082):908–910. https://doi.org/10.1016/s0140-6736(97)03148-6

    Article  CAS  PubMed  Google Scholar 

  46. Spencer MD, Knight RS, Will RG (2002) First hundred cases of variant Creutzfeldt-Jakob disease: retrospective case note review of early psychiatric and neurological features. BMJ 324(7352):1479–1482. https://doi.org/10.1136/bmj.324.7352.1479

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT (2021) The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-021-01064-9

    Article  PubMed  Google Scholar 

  48. Foley PB (2019) Dopamine in psychiatry: a historical perspective. J Neural Transm (Vienna) 126(4):473–479. https://doi.org/10.1007/s00702-019-01987-0

    Article  CAS  Google Scholar 

  49. Lucato LT, Otaduy MC, Barbosa ER, Machado AA, McKinney A, Bacheschi LA, Scaff M, Cerri GG, et al (2005) Proton MR spectroscopy in Wilson disease: analysis of 36 cases. AJNR Am J Neuroradiol 26(5):1066–1071

    PubMed  PubMed Central  Google Scholar 

  50. Pulai S, Biswas A, Roy A, Guin DS, Pandit A, Gangopadhyay G, Ghorai PK, Sarkhel S, et al (2014) Clinical features, MRI brain, and MRS abnormalities of drug-naive neurologic Wilson’s disease. Neurol India 62(2):153–158. https://doi.org/10.4103/0028-3886.132349

    Article  PubMed  Google Scholar 

  51. Stezin A, George L, Jhunjhunwala K, Lenka A, Saini J, Netravathi M, Yadav R, Pal PK (2016) Exploring cortical atrophy and its clinical and biochemical correlates in Wilson’s disease using voxel based morphometry. Parkinsonism Relat Disord 30:52–57. https://doi.org/10.1016/j.parkreldis.2016.06.017

    Article  PubMed  Google Scholar 

  52. Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130(4S Suppl):1007S-1015S. https://doi.org/10.1093/jn/130.4.1007S

    Article  CAS  PubMed  Google Scholar 

  53. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 121(8):799–817. https://doi.org/10.1007/s00702-014-1180-8

    Article  CAS  Google Scholar 

  54. Magi S, Piccirillo S, Amoroso S, Lariccia V (2019) Excitatory amino acid transporters (EAATs): glutamate transport and beyond. Int J Mol Sci 20 (22). https://doi.org/10.3390/ijms20225674

  55. Hertz L (2006) Glutamate, a neurotransmitter—and so much more. A synopsis of Wierzba III. Neurochem Int 48 (6–7):416–425. https://doi.org/10.1016/j.neuint.2005.12.021

  56. Nedergaard M, Takano T, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3(9):748–755. https://doi.org/10.1038/nrn916

    Article  CAS  PubMed  Google Scholar 

  57. Jensen N, Oliveira JR (2014) Basal ganglia vulnerability to oxidative stress. Front Neurosci 8:80. https://doi.org/10.3389/fnins.2014.00080

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goyal MK, Sinha S, Patil SA, Jayalekshmy V, Taly AB (2008) Do cytokines have any role in Wilson’s disease? Clin Exp Immunol 154(1):74–79. https://doi.org/10.1111/j.1365-2249.2008.03755.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu P, Dong J, Cheng N, Yang R, Han Y, Han Y (2019) Inflammatory cytokines expression in Wilson’s disease. Neurol Sci 40(5):1059–1066. https://doi.org/10.1007/s10072-018-3680-z

    Article  PubMed  Google Scholar 

  60. Nagasaka H, Inoue I, Inui A, Komatsu H, Sogo T, Murayama K, Murakami T, Yorifuji T, et al (2006) Relationship between oxidative stress and antioxidant systems in the liver of patients with Wilson disease: hepatic manifestation in Wilson disease as a consequence of augmented oxidative stress. Pediatr Res 60(4):472–477. https://doi.org/10.1203/01.pdr.0000238341.12229.d3

    Article  CAS  PubMed  Google Scholar 

  61. Marsman A, van den Heuvel MP, Klomp DWJ, Kahn RS, Luijten PR, Hulshoff Pol HE (2011) Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr Bull 39(1):120–129. https://doi.org/10.1093/schbul/sbr069%JSchizophreniaBulletin

    Article  PubMed  PubMed Central  Google Scholar 

  62. McCutcheon RA, Krystal JH, Howes OD (2020) Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry 19(1):15–33. https://doi.org/10.1002/wps.20693

    Article  PubMed  PubMed Central  Google Scholar 

  63. Murrough JW, Abdallah CG, Mathew SJ (2017) Targeting glutamate signalling in depression: progress and prospects. Nat Rev Drug Discov 16(7):472–486. https://doi.org/10.1038/nrd.2017.16

    Article  CAS  PubMed  Google Scholar 

  64. Huang X, Wang M, Zhang Q, Chen X, Wu J (2019) The role of glutamate receptors in attention-deficit/hyperactivity disorder: from physiology to disease. Am J Med Genet B Neuropsychiatr Genet 180(4):272–286. https://doi.org/10.1002/ajmg.b.32726

    Article  CAS  PubMed  Google Scholar 

  65. Hasler G, Buchmann A, Haynes M, Muller ST, Ghisleni C, Brechbuhl S, Tuura R (2019) Association between prefrontal glutamine levels and neuroticism determined using proton magnetic resonance spectroscopy. Transl Psychiatry 9(1):170. https://doi.org/10.1038/s41398-019-0500-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arnone D, Mumuni AN, Jauhar S, Condon B, Cavanagh J (2015) Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur Neuropsychopharmacol 25(8):1109–1117. https://doi.org/10.1016/j.euroneuro.2015.04.016

    Article  CAS  PubMed  Google Scholar 

  67. Goh KK, Wu TH, Chen CH, Lu ML (2021) Efficacy of N-methyl-D-aspartate receptor modulator augmentation in schizophrenia: a meta-analysis of randomised, placebo-controlled trials. J Psychopharmacol 35(3):236–252. https://doi.org/10.1177/0269881120965937

    Article  CAS  PubMed  Google Scholar 

  68. Singh SP, Singh V (2011) Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25(10):859–885. https://doi.org/10.2165/11586650-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  69. Salavati B, Rajji TK, Price R, Sun Y, Graff-Guerrero A, Daskalakis ZJ (2015) Imaging-based neurochemistry in schizophrenia: a systematic review and implications for dysfunctional long-term potentiation. Schizophr Bull 41(1):44–56. https://doi.org/10.1093/schbul/sbu132

    Article  PubMed  Google Scholar 

  70. Nugent AC, Diazgranados N, Carlson PJ, Ibrahim L, Luckenbaugh DA, Brutsche N, Herscovitch P, Drevets WC, Zarate CA Jr (2014) Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disord 16(2):119–128. https://doi.org/10.1111/bdi.12118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Professor S Kumar, Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences for the evaluation of MRI.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [J. Kalita]; Methodology: [J. Kalita]; Formal analysis and investigation: [J. Kalita, V. Kumar, V. Parashar]; Writing — original draft preparation: [J. Kalita]; Writing — review and editing: [J. Kalita, V. Kumar,]; Funding acquisition: [J. Kalita]; Resources: [J. Kalita, U. K. Misra]; Supervision: [J. Kalita, U. K. Misra].

Corresponding author

Correspondence to Jayantee Kalita.

Ethics declarations

Ethics Approval

The research has been approved by the Institutional Ethics Committee (IEC), SGPGIMS, Lucknow, India (IEC Code: 2017–216-DM-100).

Consent to Participate

Yes.

Consent for Publication

Yes.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, J., Kumar, V., Parashar, V. et al. Neuropsychiatric Manifestations of Wilson Disease: Correlation with MRI and Glutamate Excitotoxicity. Mol Neurobiol 58, 6020–6031 (2021). https://doi.org/10.1007/s12035-021-02525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02525-4

Keywords

Navigation