Skip to main content

Advertisement

Log in

Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Ancient metazoan organisms arose from unicellular eukaryotes that had billions of years of genetic evolution behind them. The transcription factor networks present in single-celled ancestors at the origin of the Metazoa (multicellular animals) were already capable of mediating the switching of the unicellular phenotype among alternative states of gene activity in response to environmental conditions. Cell differentiation, therefore, had its roots in phenotypic plasticity, with the ancient regulatory proteins acquiring new targets over time and evolving into the “developmental transcription factors” (DTFs) of the “developmental-genetic toolkit.” In contrast, the emergence of pattern formation and morphogenesis in the Metazoa had a different trajectory. Aggregation of unicellular metazoan ancestors changed the organisms’ spatial scale, leading to the first “dynamical patterning module” (DPM): cell-cell adhesion. Following this, other DPMs (defined as physical forces and processes pertinent to the scale of the aggregates mobilized by a set of toolkit gene products distinct from the DTFs), transformed simple cell aggregates into hollow, multilayered, segmented, differentiated and additional complex structures, with minimal evolution of constituent genes. Like cell differentiation, therefore, metazoan morphologies also originated from plastic responses of cells and tissues. Here we describe examples of DTFs and most of the important DPMs, discussing their complementary roles in the evolution of developmental mechanisms. We also provide recently characterized examples of DTFs in cell type switching and DPMs in morphogenesis of avian limb bud mesenchyme, an embryo-derived tissue that retains a high degree of developmental plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DPMs:

dynamical patterning modules

DTFs:

developmental transcription factors

ECM:

extracellular matrix

GRNs:

gene regulatory networks

PCP:

planar cell polarity

PPARγ:

Peroxisome proliferator-activated receptor gamma

UCP1:

uncoupling protein 1

References

  • Abedin M and King N 2008 The premetazoan ancestry of cadherins; Science 319 946–948

    CAS  PubMed  Google Scholar 

  • Alber M, Glimm T, Hentschel H G, Kazmierczak B, Zhang Y T, Zhu J and Newman S A 2008 The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb; Bull. Math. Biol. 70 460–483

    PubMed  Google Scholar 

  • Bateson W and Bateson B 1928 William Bateson, F. R. S., naturalist; his essays & addresses, together with a short account of his life (Cambridge: Cambridge University Press)

    Google Scholar 

  • Bissell M J, Mian I S, Radisky D and Turley E 2003 Tissue specificity: Structural cues allow diverse phenotypes from a constant genotype; in Origination of organismal form: Beyond the gene in developmental and evolutionary biology (eds) G B Müller and S A Newman (Cambridge, MA: MIT Press) pp 103–117

    Google Scholar 

  • Blankenship J R and Mitchell A P 2006 How to build a biofilm: a fungal perspective; Curr. Opin. Microbiol. 9 588–594

    CAS  PubMed  Google Scholar 

  • Blau H M and Baltimore D 1991 Differentiation requires continuous regulation; J. Cell. Biol. 112 781–783

    CAS  PubMed  Google Scholar 

  • Bolouri H 2008 Embryonic pattern formation without morphogens; Bioessays 30 412–417

    PubMed  Google Scholar 

  • Bock G R and Cardew G (eds) 1999 Homology (Novartis Foundation symposium 222) (Chichester: John Wiley)

    Google Scholar 

  • Bond C 1992 Continuous cell movements rearrange anatomical structures in intact sponges; J. Exp. Zool. 263 284–302

    CAS  PubMed  Google Scholar 

  • Boute N, Exposito J Y, Boury-Esnault N, Vacelet J, Noro N, Miyazaki K, Yoshizato K and Garrone R 1996 Type IV collagen in sponges, the missing link in basement membrane ubiquity; Biol. Cell 88 37–44

    CAS  PubMed  Google Scholar 

  • Brand B, Christ B and Jacob H J 1985 An experimental analysis of the developmental capacities of distal parts of avian leg buds; Am. J. Anat. 173 321–340

    CAS  PubMed  Google Scholar 

  • Chen J Y, Bottjer D J, Oliveri P, Dornbos S Q, Gao F, Ruffins S, Chi H, Li C W and Davidson E H 2004 Small bilaterian fossils from 40 to 55 million years before the cambrian; Science 305 218–222

    CAS  PubMed  Google Scholar 

  • Christley S, Alber M S and Newman S A 2007 Patterns of mesenchymal condensation in a multiscale, discrete stochastic model; PLoS Comput. Biol. 3 (e76) 0743–0753

    Google Scholar 

  • Coffman J A 2003 Runx transcription factors and the developmental balance between cell proliferation and differentiation; Cell Biol. Int. 27 315–324

    CAS  PubMed  Google Scholar 

  • Comper W D (ed.) 1996 Extracellular matrix I Tissue function; II Molecular components and interactions (Amsterdam: Harwood Academic Publishers)

    Google Scholar 

  • Conway Morris S 2006 Darwin’s dilemma: the realities of the Cambrian ‘explosion’; Philos. Trans. R. Soc. London B Biol. Sci. 361 1069–1083

    PubMed  Google Scholar 

  • Cooke J and Zeeman E C 1976 A clock and wavefront model for control of the number of repeated structures during animal morphogenesis; J. Theor. Biol. 58 455–476

    CAS  PubMed  Google Scholar 

  • Cornillon S, Gebbie L, Benghezal M, Nair P, Keller S, Wehrle-Haller B, Charette S J, Bruckert F, Letourneur F and Cosson P 2006 An adhesion molecule in free-living Dictyostelium amoebae with integrin β features; EMBO Rep. 7 617–621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crick F H C 1970 Diffusion in embryogenesis; Nature (London) 225 420–422

    CAS  Google Scholar 

  • Damen W G, Janssen R and Prpic N M 2005 Pair rule gene orthologs in spider segmentation; Evol. Dev. 7 618–628

    PubMed  Google Scholar 

  • Damon B J, Mezentseva N V, Kumaratilake J S, Forgacs G and Newman S A 2008 Limb bud and flank mesoderm have distinct “physical phenotypes” that may contribute to limb budding; Dev. Biol. 321 319–330

    CAS  PubMed  Google Scholar 

  • Davidson E H 2006 The regulatory genome: gene regulatory networks in development and evolution (Amsterdam, London: Elsevier/Academic Press)

    Google Scholar 

  • de Crombrugghe B, Lefebvre V, Behringer R R, Bi W, Murakami S and Huang W 2000 Transcriptional mechanisms of chondrocyte differentiation; Matrix Biol. 19 389–394

    PubMed  Google Scholar 

  • de Gennes P G 1992 Soft matter; Science 256 495–497

    PubMed  Google Scholar 

  • Delise A M and Tuan R S 2002 Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro; Dev. Dyn. 225 195–204

    CAS  PubMed  Google Scholar 

  • Downie S A and Newman S A 1994 Morphogenetic differences between fore and hind limb precartilage mesenchyme: relation to mechanisms of skeletal pattern formation; Dev. Biol. 162 195–208

    CAS  PubMed  Google Scholar 

  • Downie S A and Newman S A 1995 Different roles for fibronectin in the generation of fore and hind limb precartilage condensations; Dev. Biol. 172 519–530

    CAS  PubMed  Google Scholar 

  • Duboule D and Wilkins A S 1998 The evolution of ‘bricolage’; Trends Genet. 14 54–59

    CAS  PubMed  Google Scholar 

  • Droser M L and Gehling J G 2008 Synchronous aggregate growth in an abundant new Ediacaran tubular organism; Science 319 1660–1662

    CAS  PubMed  Google Scholar 

  • Dunn C W, Hejnol A, Matus D Q, Pang K, Browne W E, Smith S A, Seaver E, Rouse G W, et al. 2008 Broad phylogenomic sampling improves resolution of the animal tree of life; Nature 452 745–749

    CAS  PubMed  Google Scholar 

  • Ehebauer M, Hayward P and Arias A M 2006 Notch, a universal arbiter of cell fate decisions; Science 314 1414–1415

    CAS  PubMed  Google Scholar 

  • Forgacs G and Newman S A 2005 Biological physics of the developing embryo (Cambridge: Cambridge Univ. Press)

    Google Scholar 

  • Franceschi R T, Ge C, Xiao G, Roca H and Jiang D 2007 Transcriptional regulation of osteoblasts; Ann. N. Y. Acad. Sci. 1116 196–207

    CAS  PubMed  Google Scholar 

  • Frenz D A, Akiyama S K, Paulsen D F and Newman S A 1989a Latex beads as probes of cell surface-extracellular matrix interactions during chondrogenesis: evidence for a role for amino-terminal heparin-binding domain of fibronectin; Dev. Biol. 136 87–96

    CAS  PubMed  Google Scholar 

  • Frenz D A, Jaikaria N S and Newman S A 1989b The mechanism of precartilage mesenchymal condensation: a major role for interaction of the cell surface with the amino-terminal heparin-binding domain of fibronectin; Develop. Biol. 136 97–103

    CAS  PubMed  Google Scholar 

  • Fujimaki R, Toyama Y, Hozumi N and Tezuka K 2006 Involvement of Notch signalling in initiation of prechondrogenic condensation and nodule formation in limb bud micromass cultures; J. Bone Miner. Metab. 24 191–198

    CAS  PubMed  Google Scholar 

  • Funayama N, Nakatsukasa M, Hayashi T and Agata K 2005 Isolation of the choanocyte in the fresh water sponge, Ephydatia fluviatilis and its lineage marker, Ef annexin; Dev. Growth Differ. 47 243–253

    CAS  PubMed  Google Scholar 

  • Garcia-Ojalvo J, Elowitz M B and Strogatz S H 2004 Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing; Proc. Natl. Acad. Sci. USA 101 10955–10960

    CAS  PubMed  Google Scholar 

  • Gehring W J 2002 The genetic control of eye development and its implications for the evolution of the various eye-types; Int. J. Dev. Biol. 46 65–73

    PubMed  Google Scholar 

  • Gesta S, Tseng Y H and Kahn C R 2007 Developmental origin of fat: tracking obesity to its source; Cell 131 242–256

    CAS  PubMed  Google Scholar 

  • Gierer A 1977 Physical aspects of tissue evagination and biological form; Q. Rev. Biophys. 10 529–593

    CAS  PubMed  Google Scholar 

  • Gierer A and Meinhardt H 1972 A theory of biological pattern formation; Kybernetik 12 30–39

    CAS  PubMed  Google Scholar 

  • Gilbert S F 2006 Developmental biology 8th edition (Sunderland, Mass., Sinauer Associates); http://8e.devbio.com/article.php?ch=3&id=18

    Google Scholar 

  • Giudicelli F, Ozbudak E M, Wright G J and Lewis J 2007 Setting the tempo in development: an investigation of the zebrafish somite clock mechanism; PLoS Biol.. 5 e150

    PubMed  PubMed Central  Google Scholar 

  • Godt D and Tepass U 1998 Drosophila oocyte localization is mediated by differential cadherin-based adhesion; Nature (London) 395 387–391

    CAS  Google Scholar 

  • Goldbeter A 1996 Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour (Cambridge: Cambridge University Press)

    Google Scholar 

  • Gonzalez-Crespo S and Morata G 1996 Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite; Development 122 3921–3928

    CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A and St Johnston D 1998 The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte; Development 125 3635–3644

    CAS  PubMed  Google Scholar 

  • Gould S J and Vrba E 1982 Exaptation; a missing term in the science of form; Paleobiology 8 4–15

    Google Scholar 

  • Hadrys T, DeSalle R, Sagasser S, Fischer N and Schierwater B 2005 The Trichoplax PaxB gene: a putative Proto-PaxA/B/C gene predating the origin of nerve and sensory cells; Mol. Biol. Evol. 22 1569–1578

    CAS  PubMed  Google Scholar 

  • Hagadorn J W, Xiao S, Donoghue P C, Bengtson S, Gostling N J, Pawlowska M, Raff E C, Raff R A, et al. 2006 Cellular and subcellular structure of neoproterozoic animal embryos; Science 314 291–294

    CAS  PubMed  Google Scholar 

  • Hall B K and Miyake T 2000 All for one and one for all: condensations and the initiation of skeletal development; BioEssays 22 138–147

    CAS  PubMed  Google Scholar 

  • Haraway D J 1976 Crystals, fabrics, and fields: metaphors that shape embryos (New Haven: Yale University Press)

    Google Scholar 

  • Haun C, Alexander J, Stainier D Y and Okkema P G 1998 Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene; Proc. Natl. Acad. Sci. USA 95 5072–5075

    CAS  PubMed  Google Scholar 

  • Hentschel H G, Glimm T, Glazier J A and Newman S A 2004 Dynamical mechanisms for skeletal pattern formation in the vertebrate limb; Proc. R. Soc. London B Biol. Sci. 271 1713–1722

    CAS  Google Scholar 

  • Holstein T W, Hobmayer E and Technau U 2003 Cnidarians: an evolutionarily conserved model system for regeneration?; Dev. Dyn. 226 257–267

    CAS  PubMed  Google Scholar 

  • Howard K R and Struhl G 1990 Decoding positional information: regulation of the pair-rule gene hairy; Development 110 1223–1231

    CAS  PubMed  Google Scholar 

  • Ivanitsky G R, Krinsky V I and Mornev O A 1987 Autowaves: an interdisciplinary finding; in Cybernetics of living matter: Nature, man, information (ed.) I M Makarov (Moscow: Mir) pp 52–74

    Google Scholar 

  • Jiang T X, Widelitz R B, Shen W M, Will P, Wu D Y, Lin C M, Jung H S and Chuong C-M 2004 Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models; Int. J. Dev. Biol. 48 117–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kageyama R, Masamizu Y and Niwa Y 2007 Oscillator mechanism of Notch pathway in the segmentation clock; Dev. Dyn. 236 1403–1409

    CAS  PubMed  Google Scholar 

  • Kaiser D 2001 Building a multicellular organism; Annu. Rev. Genet. 35 103–123

    CAS  PubMed  Google Scholar 

  • Kaltner H and Gabius H-J 2001 Animal lectins: from initial description to elaborated structural and functional classification; Adv. Exp. Med. Biol. 491 79–94

    CAS  PubMed  Google Scholar 

  • Kaneko K 2006 Life: an introduction to complex systems biology (Berlin, New York: Springer)

    Google Scholar 

  • Kappen C and Ruddle FH 1993 Evolution of a regulatory gene family: HOM/HOX genes; Curr. Opin. Genet. Dev. 3 931–938

    CAS  PubMed  Google Scholar 

  • Karner C, Wharton K A Jr and Carroll T J 2006a Planar cell polarity and vertebrate organogenesis; Semin. Cell Dev. Biol. 17 194–203

    PubMed  Google Scholar 

  • Karner C, Wharton K A and Carroll T J 2006b Apical-basal polarity, Wnt signaling and vertebrate organogenesis; Semin. Cell Dev. Biol. 17 214–222

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Rodriguez-Leon J and Belmonte J C 2006 The role of TGFβs and Sox9 during limb chondrogenesis; Curr. Opin. Cell Biol. 18 723–729

    CAS  PubMed  Google Scholar 

  • Kawakami Y, Tsuda M, Takahashi S, Taniguchi N, Esteban C R, Zemmyo M, Furumatsu T, Lotz M, Belmonte J C and Asahara H 2005 Transcriptional coactivator PGC-1α regulates chondrogenesis via association with Sox9; Proc. Natl. Acad. Sci. USA 102 2414–2419

    CAS  PubMed  Google Scholar 

  • Kazmierczak J and Kempe S 2004 Calcium build-up in the Precambrian sea: A major promoter in the evolution of eukaryotic life; in Origins (ed.) J Seckbach (Dordrecht: Kluwer) pp 329–345

    Google Scholar 

  • Keller A D 1995 Model genetic circuits encoding autoregulatory transcription factors; J. Theor. Biol. 172 169–185

    CAS  PubMed  Google Scholar 

  • Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D and Skoglund P 2000 Mechanisms of convergence and extension by cell intercalation; Philos. Trans. R. Soc. London B Biol. Sci. 355 897–922

    CAS  PubMed  Google Scholar 

  • Keller R 2002 Shaping the vertebrate body plan by polarized embryonic cell movements; Science 298 1950–1954

    CAS  PubMed  Google Scholar 

  • Keller R, Shook D and Skoglund P 2008 The forces that shape embryos: physical aspects of convergent extension by cell intercalation; Phys. Biol. 5 15007

    Google Scholar 

  • Kiefer J C 2007 Back to basics: Sox genes; Dev. Dyn. 236 2356–2366

    CAS  PubMed  Google Scholar 

  • King N, Westbrook M J, Young S L, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, et al. 2008 The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans; Nature (London) 451 783–788

    CAS  Google Scholar 

  • King N, Hittinger C T and Carroll S B 2003 Evolution of key cell signaling and adhesion protein families predates animal origins; Science 301 361–363

    CAS  PubMed  Google Scholar 

  • Kozmik Z 2008 The role of Pax genes in eye evolution; Brain Res. Bull. 75 335–339

    CAS  PubMed  Google Scholar 

  • Lander A 2007 Morpheus unbound: Reimagining the morphogen gradient; Cell 128 245–256

    CAS  PubMed  Google Scholar 

  • Lang B F, O’Kelly C, Nerad T, Gray M W and Burger G 2002 The closest unicellular relatives of animals; Curr. Biol. 12 1773–1778

    CAS  PubMed  Google Scholar 

  • Lapraz F, Rottinger E, Duboc V, Range R, Duloquin L, Walton K, Wu S Y, Bradham C, Loza M A, Hibino T, et al. 2006 RTK and TGF-β signaling pathways genes in the sea urchin genome; Dev. Biol. 300 132–152

    CAS  PubMed  Google Scholar 

  • Laudet V 1997 Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor; J. Mol. Endocrinol. 19 207–226

    CAS  PubMed  Google Scholar 

  • Larroux C, Fahey B, Degnan S M, Adamski M, Rokhsar D S and Degnan B M 2007 The NK homeobox gene cluster predates the origin of Hox genes; Curr. Biol. 17 706–710

    CAS  PubMed  Google Scholar 

  • Larroux C, Luke G N, Koopman P, Rokhsar D S, Shimeld S M and Degnan B M 2008 Genesis and expansion of metazoan transcription factor gene classes; Mol. Biol. Evol. 25 980–996

    CAS  PubMed  Google Scholar 

  • Leonard C M, Fuld H M, Frenz D A, Downie S A, Massagué J and Newman S A 1991 Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-β and evidence for endogenous TGF-β-like activity; Dev. Biol. 145 99–109

    CAS  PubMed  Google Scholar 

  • Lewis J 2003 Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator; Curr. Biol. 13 1398–1408

    CAS  PubMed  Google Scholar 

  • Lowell B B 1999 PPARγ: an essential regulator of adipogenesis and modulator of fat cell function; Cell 99 239–242

    CAS  PubMed  Google Scholar 

  • Luporini P, Vallesi A, Alimenti C and Ortenzi C 2006 The cell type-specific signal proteins (pheromones) of protozoan ciliates; Curr. Pharm. Des. 12 3015–3024

    CAS  PubMed  Google Scholar 

  • Marie P J 2008 Transcription factors controlling osteoblastogenesis; Arch. Biochem. Biophys. 473 98–105

    CAS  PubMed  Google Scholar 

  • Masamizu Y, Ohtsuka T, Takashima Y, Nagahara H, Takenaka Y, Yoshikawa K, Okamura H and Kageyama R 2006 Realtime imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells; Proc. Natl. Acad. Sci. USA 103 1313–1318

    CAS  PubMed  Google Scholar 

  • Matsutani E and Yamagata T 1982 Chick endogenous lectin enhances chondrogenesis of cultured chick limb bud cells; Dev. Biol. 92 544–548

    CAS  PubMed  Google Scholar 

  • Meinhardt H 2008 Models of biological pattern formation: from elementary steps to the organization of embryonic axes; Curr. Top. Dev. Biol. 81 1–63

    PubMed  Google Scholar 

  • Meinhardt H and Gierer A 2000 Pattern formation by local self-activation and lateral inhibition; BioEssays 22 753–760

    CAS  PubMed  Google Scholar 

  • Mendoza M, Redemann S and Brunner D 2005 The fission yeast MO25 protein functions in polar growth and cell separation; Eur. J. Cell Biol. 84 915–926

    CAS  PubMed  Google Scholar 

  • Mezentseva N V, Kumaratilake J S and Newman S A 2008 The brown adipocyte differentiation pathway in birds: an evolutionary road not taken; BMC Biol. 6 17

    PubMed  PubMed Central  Google Scholar 

  • Mikhailov A S 1990 Foundations of synergetics I (Berlin: Springer-Verlag)

    Google Scholar 

  • Miller D J and Ball E E 2005 Animal evolution: The enigmatic phylum placozoa revisited; Curr. Biol. 15 R26–28

    CAS  PubMed  Google Scholar 

  • Mittenthal J E and Mazo R M 1983 A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment; J. Theoret. Biol. 100 443–483

    CAS  Google Scholar 

  • Miura T and Shiota K 2000 TGFβ2 acts as an “activator” molecule in reaction-diffusion model and is involved in cell sorting phenomenon in mouse limb micromass culture; Dev. Dyn. 217 241–249

    CAS  PubMed  Google Scholar 

  • Miura T and Maini P K 2004 Speed of pattern appearance in reaction-diffusion models: implications in the pattern formation of limb bud mesenchyme cells; Bull. Math. Biol. 66 627–649

    PubMed  Google Scholar 

  • Mlodzik M 2002 Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation?; Trends Genet. 18 564–571

    CAS  PubMed  Google Scholar 

  • Moftah M Z, Downie S A, Bronstein N B, Mezentseva N, Pu J, Maher P A and Newman S A 2002 Ectodermal FGFs induce perinodular inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2; Dev. Biol. 249 270–282

    CAS  PubMed  Google Scholar 

  • Müller G B 2007 Evo-devo: extending the evolutionary synthesis; Nat. Rev. Genet. 8 943–949

    PubMed  Google Scholar 

  • Müller G B and Newman S A 2005 The innovation triad: an EvoDevo agenda; J. Exp. Zoolog. B Mol. Dev. Evol. 304 487–503

    Google Scholar 

  • Newman S A 1977 Lineage and pattern in the developing wing bud; in Vertebrate limb and somite morphogenesis (eds) D A Ede, J R Hinchliffe and M Balls (Cambridge: Cambridge University Press) pp 181–197

    Google Scholar 

  • Newman S A 1980 Fibroblast progenitor cells of the embryonic chick limb; J. Embryol. Exp. Morphol. 56 191–200

    CAS  PubMed  Google Scholar 

  • Newman S A 1992 Generic physical mechanisms of morphogenesis and pattern formation as determinants in the evolution of multicellular organization; J. Biosci. 17 193–215

    Google Scholar 

  • Newman S A 1993 Is segmentation generic?; BioEssays 15 277–283

    CAS  PubMed  Google Scholar 

  • Newman S A 1998 Epithelial morphogenesis: a physicoevolutionary interpretation; in Molecular basis of epithelial appendage morphogenesis (ed.) C-M Chuong (Austin, TX: R G Landes) pp 341–358

    Google Scholar 

  • Newman S A 2006 The developmental-genetic toolkit and the molecular homology-analogy paradox; Biol. Theor. 1 12–16

    Google Scholar 

  • Newman S A 2007a William Bateson’s physicalist ideas; in From embryology to Evo-Devo: a history of evolutionary development (eds) M Laubichler and J Maienschein (Cambridge, MA: MIT Press) pp 83–107

    Google Scholar 

  • Newman S A 2007b The Turing mechanism in vertebrate limb patterning; Nat. Rev. Mol. Cell Biol. 8 http://www.nature.com/nrm/journal/v8/n6/full/nrm1830-c1.html

  • Newman S A and Bhat R 2007 Activator-inhibitor dynamics of vertebrate limb pattern formation; Birth Defects Res. C Embryo Today 81 305–319

    CAS  PubMed  Google Scholar 

  • Newman S A and Bhat R 2008 Dynamical patterning modules: physico-genetic determinants of morphological development and evolution; Phys. Biol. 5 15008

    Google Scholar 

  • Newman S A and Bhat R 2009 Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form; Int. J. Dev. Biol. (in press)

  • Newman S A and Comper W D 1990 ’Generic’ physical mechanisms of morphogenesis and pattern formation; Development 110 1–18

    CAS  PubMed  Google Scholar 

  • Newman S A and Frisch H L 1979 Dynamics of skeletal pattern formation in developing chick limb; Science 205 662–668

    CAS  PubMed  Google Scholar 

  • Newman S A, Forgacs G and Müller G B 2006 Before programs: The physical origination of multicellular forms; Int. J. Dev. Biol. 50 289–299

    CAS  PubMed  Google Scholar 

  • Newman S A and Müller G B 2000 Epigenetic mechanisms of character origination; J. Exp. Zool. B (Mol. Dev. Evol.) 288 304–317

    CAS  Google Scholar 

  • Newman S A, Pautou M-P and Kieny M 1981 The distal boundary of myogenic primordia in chimeric avian limb buds and its relation to an accessible population of cartilage progenitor cells; Dev. Biol. 84 440–448

    CAS  PubMed  Google Scholar 

  • Newman S A and Tomasek J J 1996 Morphogenesis of connective tissues; in Extracellular matrix (ed.) W D Comper (Amsterdam: Harwood Academic Publishers) pp 335–369

    Google Scholar 

  • Nichols S A, Dirks W, Pearse J S and King N 2006 Early evolution of animal cell signaling and adhesion genes; Proc. Natl. Acad. Sci. USA 103 12451–1246

    CAS  PubMed  Google Scholar 

  • Nicolis G and Prigogine I 1989 Exploring complexity: An introduction (Gordonsville, Virginia: W H Freeman)

    Google Scholar 

  • Nielsen C 2008 Six major steps in animal evolution: are we derived sponge larvae?; Evol. Dev. 10 241–257

    PubMed  Google Scholar 

  • Nijhout H F 2003 Gradients, diffusion and genes in pattern formation; in Origination of organismal form: Beyond the gene in developmental and evolutionary biology (eds) G B Müller and S A Newman (Cambridge, MA.: MIT Press) pp 165–181

    Google Scholar 

  • Oberlender S A and Tuan R S 1994 Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis; Development 120 177–187

    CAS  PubMed  Google Scholar 

  • Oliveri P, Walton K D, Davidson E H and McClay D R 2006 Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo; Devlopment 133 4173–4181]

    CAS  Google Scholar 

  • Oliveri P, Tu Q and Davidson E H 2008 Global regulatory logic for specification of an embryonic cell lineage; Proc. Natl. Acad. Sci. USA 105 5955–5962

    CAS  PubMed  Google Scholar 

  • Ozbudak E M and Lewis J 2008 Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries; PLoS Genet. 4 e15

    PubMed  PubMed Central  Google Scholar 

  • Palmeirim I, Henrique D, Ish-Horowicz D and Pourquié O 1997 Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis; Cell 91 639–648

    CAS  PubMed  Google Scholar 

  • Pan J and Snell W J 2000 Signal transduction during fertilization in the unicellular green alga, Chlamydomonas; Curr. Opin. Microbiol. 3 596–602

    CAS  PubMed  Google Scholar 

  • Panganiban G and Rubenstein J L 2002 Developmental functions of the Distal-less/Dlx homeobox genes; Development 129 4371–4386

    CAS  PubMed  Google Scholar 

  • Papp B and Oliver S 2005 Genome-wide analysis of the context-dependence of regulatory networks; Genome Biol. 6 206

    PubMed  PubMed Central  Google Scholar 

  • Paulsen D F and Solursh M 1988 Microtiter micromass cultures of limb-bud mesenchymal cells; In vitro Cell Dev. Biol. 24 138–147

    CAS  PubMed  Google Scholar 

  • Philippe H, Snell E A, Bapteste E, Lopez P, Holland P W and Casane D 2004 Phylogenomics of eukaryotes: impact of missing data on large alignments; Mol. Biol. Evol. 21 1740–1752

    CAS  PubMed  Google Scholar 

  • Pourquié O 2003 The segmentation clock: converting embryonic time into spatial pattern; Science 301 328–330

    PubMed  Google Scholar 

  • Quan X J, Denayer T, Yan J, Jafar-Nejad H, Philippi A, Lichtarge O, Vleminckx K and Hassan B A 2004 Evolution of neural precursor selection: functional divergence of proneural proteins; Development 131 1679–1689

    CAS  PubMed  Google Scholar 

  • Reinke H and Gatfield D 2006 Genome-wide oscillation of transcription in yeast; Trends Biochem. Sci. 31 189–191

    CAS  PubMed  Google Scholar 

  • Rentzsch F, Fritzenwanker J H, Scholz C B and Dechnau U 2008 FGF signalling controls formation of the apical sensory organ in the Cnitarias Nematostella Vectensis; Development 135 1761–1769

    CAS  PubMed  Google Scholar 

  • Riedel-Kruse I H, Muller C and Oates A C 2007 Synchrony dynamics during initiation, failure, and rescue of the segmentation clock; Science 317 1911–1915

    CAS  PubMed  Google Scholar 

  • Rokas A, Kruger D and Carroll S B 2005 Animal evolution and the molecular signature of radiations compressed in time; Science 310 1933–1938

    PubMed  Google Scholar 

  • Rose S M 1958 Feedback in the differentiation of cells; Sci. Am. 199 36–41

    CAS  PubMed  Google Scholar 

  • Ryals P E, Smith-Somerville H E and Buhse H E Jr 2002 Phenotype switching in polymorphic Tetrahymena: a single-cell Jekyll and Hyde; Int. Rev. Cytol. 212 209–238

    CAS  PubMed  Google Scholar 

  • Salazar-Ciudad I and Jernvall J 2002 A gene network model accounting for development and evolution of mammalian teeth; Proc. Natl. Acad. Sci. USA 99 8116–8120

    CAS  PubMed  Google Scholar 

  • Schlichting C and Pigliucci M 1998 Phenotypic evolution: a reaction norm perspective (Sunderland, Mass.: Sinauer)

    Google Scholar 

  • Schröder H C, Perovic-Ottstadt S, Wiens M, Batel R, Muller I M and Muller W E 2004 Differentiation capacity of epithelial cells in the sponge Suberites domuncula; Cell Tissue Res. 316 271–280

    PubMed  Google Scholar 

  • Schwartz R J and Olson E N 1999 Building the heart piece by piece: modularity of cis-elements regulating Nkx2-5 transcription; Development 126 4187–4192

    CAS  PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R 2008 Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer; Nature (London) 453 930–994

    CAS  Google Scholar 

  • Selleri L, Depew M J, Jacobs Y, Chanda S K, Tsang K Y, Cheah K S, Rubenstein J L, O’Gorman S and Cleary M L 2001 Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation; Development 128 3543–3557

    CAS  PubMed  Google Scholar 

  • Sick S, Reinker S, Timmer J and Schlake T 2006 WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism; Science 314 1447–1450

    CAS  PubMed  Google Scholar 

  • Simpson P 1997 Notch signalling in development: on equivalence groups and asymmetric developmental potential; Curr. Opin. Genet. Dev. 7 537–542

    CAS  PubMed  Google Scholar 

  • Smith J, Theodoris C and Davidson E H 2007 A gene regulatory network subcircuit drives a dynamic pattern of gene expression; Science 318 794–797

    CAS  PubMed  Google Scholar 

  • Snell E A, Furlong R F and Holland P W 2001 Hsp70 sequences indicate that choanoflagellates are closely related to animals; Curr. Biol. 11 967–970

    CAS  PubMed  Google Scholar 

  • Song M H, Huang F Z, Gonsalves F C and Weisblat D A 2004 Cell cycle-dependent expression of a hairy and Enhancer of split (hes) homolog during cleavage and segmentation in leech embryos; Dev. Biol. 269 183–195

    CAS  PubMed  Google Scholar 

  • Soto A M and Sonnenschein C 2005 Emergentism as a default: cancer as a problem of tissue organization; J. Biosci. 30 103–118

    CAS  PubMed  Google Scholar 

  • Srivastava M, Begovic E, Chapman J, Putnam N H, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter M L, Signorovitch A Y, Moreno M A, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev I V, Buss L W, Schierwater B, Dellaporta S L and Rokhsar D S 2008 The Trichoplax genome and the nature of placozoans; Nature (London) 454 955–960

    CAS  Google Scholar 

  • Steinberg M S 2003 Cell adhesive interactions and tissue self-organization; in Origination of organismal form: Beyond the gene in developmental and evolutionary biology (eds) G B Müller and S A Newman (Cambridge, MA.: MIT Press) pp 137–163

    Google Scholar 

  • Steinberg M S and Takeichi M 1994 Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression; Proc. Natl. Acad. Sci. USA 91 206–209

    CAS  PubMed  Google Scholar 

  • Stramer B and Martin P 2005 Cell biology: master regulators of sealing and healing; Curr. Biol. 15 R425–427

    CAS  PubMed  Google Scholar 

  • Strogatz S H 1994 Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (Cambridge, Mass.: Perseus Pub.)

    Google Scholar 

  • Sudhop S, Coulier F, Bieller A, Vogt A, Hotz T and Hassel M 2004 Signalling by the FGFR-like tyrosine kinase, Kringelchen, is essential for bud detachment in Hydra vulgaris; Development 131 4001–4011

    CAS  PubMed  Google Scholar 

  • Süel G M, Garcia-Ojalvo J, Liberman L M and Elowitz M B 2006 An excitable gene regulatory circuit induces transient cellular differentiation; Nature (London) 440 545–550

    Google Scholar 

  • Süel G M, Kulkarni R P, Dworkin J, Garcia-Ojalvo J and Elowitz M B 2007 Tunability and noise dependence in differentiation dynamics; Science 315 1716–1719

    PubMed  Google Scholar 

  • Shalchian-Tabrizi K, Minge M A, Espelund M, Orr R, Ruden T, Jakobsen K S and Cavalier-Smith T 2008 Multigene phylogeny of choanozoa and the origin of animals; PLoS ONE 3 e2098

    PubMed  PubMed Central  Google Scholar 

  • Tsonis P A, Del Rio-Tsonis K, Millan J L and Wheelock M J 1994 Expression of N-cadherin and alkaline phosphatase in chick limb bud mesenchymal cells: regulation by 1,25-dihydroxyvitamin D3 or TGF-β1; Exp. Cell Res. 213 433–437

    CAS  PubMed  Google Scholar 

  • Turing A 1952 The chemical basis of morphogenesis; Philos. Trans. R. Soc. London B 237 37–72

    Google Scholar 

  • Uriz M J, Turon X, Becerro M A and Agell G 2003 Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions; Microsc. Res. Tech. 62 279–299

    CAS  PubMed  Google Scholar 

  • Vasiliauskas D, Laufer E and Stern C D 2003 A role for hairy1 in regulating chick limb bud growth; Dev. Biol. 262 94–106

    CAS  PubMed  Google Scholar 

  • Veeman M T, Axelrod J D and Moon R T 2003 A second canon. Functions and mechanisms of β-catenin-independent Wnt signaling; Dev. Cell 5 367–377

    CAS  PubMed  Google Scholar 

  • Vlamakis H, Aguilar C, Losick R and Kolter R 2008 Control of cell fate by the formation of an architecturally complex bacterial community; Genes Dev. 22 945–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wainright P O, Hinkle G, Sogin M L and Stickel S K 1993 Monophyletic origins of the metazoa: an evolutionary link with fungi; Science 260 340–342

    CAS  PubMed  Google Scholar 

  • Widelitz R B, Jiang T X, Murray B A and Chuong C-M 1993 Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis; J. Cell Physiol. 156 399–411

    CAS  PubMed  Google Scholar 

  • Wilkie A O, Patey S J, Kan S H, van den Ouweland A M and Hamel B C 2002 FGFs, their receptors, and human limb malformations: clinical and molecular correlations; Am. J. Med. Genet. 112 266–278

    PubMed  Google Scholar 

  • Wilkins A S 2002 The evolution of developmental pathways (Sunderland, Mass.: Sinauer Associates)

    Google Scholar 

  • Williams R, Dowthwaite G P, Evans D J and Archer C 2006 Notch family signalling and notch signalling modulation during chondrogenesis; Eur. Cells Mater. J. (Suppl 1) 12 74

    Google Scholar 

  • Wimmer W, Perovic S, Kruse M, Schröder H C, Krasko A, Batel R and Müller W E 1999 Origin of the integrin-mediated signal transduction. Functional studies with cell cultures from the sponge Suberites domuncula; Eur. J. Biochem. 260 156–165

    CAS  PubMed  Google Scholar 

  • Winther R G 2001 Varieties of modules: kinds, levels, origins, and behaviors; J. Exp. Zool. (Mol. Dev. Evol.) 291 116–129

    CAS  Google Scholar 

  • Zajac M, Jones G L and Glazier J A 2003 Simulating convergent extension by way of anisotropic differential adhesion; J. Theor. Biol. 222 247–259

    PubMed  Google Scholar 

  • Zhang J M, Chen L, Krause M, Fire A and Paterson B M 1999 Evolutionary conservation of MyoD function and differential utilization of E proteins; Dev. Biol. 208 465–472

    CAS  PubMed  Google Scholar 

  • Zhou G, Zheng Q, Engin F, Munivez E, Chen Y, Sebald E, Krakow D and Lee B 2006 Dominance of SOX9 function over RUNX2 during skeletogenesis; Proc. Natl. Acad. Sci. USA 103 19004–19009

    CAS  PubMed  Google Scholar 

  • Zou L, Zou X, Li H, Mygind T, Zeng Y, Lu N and Bunger C 2006 Molecular mechanism of osteochondroprogenitor fate determination during bone formation; Adv. Exp. Med. Biol. 585 431–441

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Newman.

Additional information

This article, designated JBEP-1, is published in affiliation with the Embryo Projects ( http://embryo.asu.edu/index.php ), an international consortium of biologists, historians and philosophers of science that examines the changing scientific understanding of embryos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newman, S.A., Bhat, R. & Mezentseva, N.V. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. J Biosci 34, 553–572 (2009). https://doi.org/10.1007/s12038-009-0074-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0074-7

Keywords

Navigation