Skip to main content

Advertisement

Log in

Phenotypic plasticity and longevity in plants and animals: cause and effect?

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker P, Meinzer F C and Wullschleger S D 2000 Hydraulic limitation of tree height: a critique; Func. Ecol. 14 4–11

    Article  Google Scholar 

  • Borges R M 2008 Plasticity comparisons between plants and animals: concepts and mechanisms; Plant Signal. Behav. 3 367–375

    Article  Google Scholar 

  • Borges R M 2005 Do plants and animals differ in phenotypic plasticity?; J. Biosci. 30 41–50

    Article  Google Scholar 

  • Bosch T C G 2007 Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration; Dev. Biol. 303 421–433

    Article  CAS  Google Scholar 

  • Bosch T C G 2008 The path less explored: innate immune reactions in cnidarians; in Innate immunity of plants, animals, and humans (ed.) H Heine (Berlin: Springer-Verlag) pp 27–42

    Chapter  Google Scholar 

  • Bosch T C G and David C N 1987 Stem cells of Hydra magnipapillata can differentiate into somatic cells and germ cell lines; Dev. Biol. 121 182–191

    Article  Google Scholar 

  • Bradford G B, Williams B, Rossi R and Bertoncello I 1997 Quiescence cycling, and turnover in the primitive hematopoietic stem cell compartment; Exp. Hematol. 25 445–453

    CAS  PubMed  Google Scholar 

  • Brown J S and Venable D L 1986 Evolutionary ecology of seed-bank annuals in temporally varying environments; Am. Nat. 127 31–47

    Article  Google Scholar 

  • Campisi J 2001 From cells to organisms: can we learn about aging from cells in culture?; Exp. Gerontol. 36 607–618

    Article  CAS  Google Scholar 

  • Chambers J Q, Higuchi N and Schimpel J P 1998 Ancient trees in Amazonia; Nature (London) 391 135–136

    Article  CAS  Google Scholar 

  • Charlesworth B 1980 Evolution in age-structured populations (London: Cambridge University Press)

    Google Scholar 

  • Cosme-Blanco W and Chang S 2008 Dual role of telomere dysfunction in initiation and suppression of tumorigenesis; Exp. Cell Res. 314 1973–1979

    Article  CAS  Google Scholar 

  • de Magalhães J P, Costa J and Church G M 2007 An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts; J. Gerontol. A Biol. Sci. Med. Sci. 62 149–160

    Article  Google Scholar 

  • Doncaster C P 2003 Evolution of indefinite generation lengths; Biol. J. Linn. Soc. 80 269–280

    Article  Google Scholar 

  • Ehrlén J and Lehtilä K 2002 How perennial are perennial plants?; Oikos 98 308–322

    Article  Google Scholar 

  • Elahi R and Edmunds P J 2007 Tissue age affects calcification in the scleractinian coral Madracis mirabilis; Biol. Bull. 212 20–28

    Article  Google Scholar 

  • Enquist B J, Tiffney B H and Niklas K J 2007 Metabolic scaling and the evolutionary dynamics of plant size, form, and diversity: toward a synthesis of ecology, evolution, and paleontology; Int. J. Plant Sci. 168 729–749

    Article  Google Scholar 

  • Finch C E and Austad S N 2001 History and prospects: symposium on organisms with slow aging; Exp. Gerontol. 36 593–597

    Article  CAS  Google Scholar 

  • Flanary B E and Kletetschka G 2005 Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva; Biogerontology 6 101–111

    Article  CAS  Google Scholar 

  • Ford E D and Ishii H 2001 The method of synthesis in ecology; Oikos 93 153–160

    Article  Google Scholar 

  • Fukuda H 1994 Redifferentiation of single mesophyll cells into tracheary elements; Int. J. Plant Sci. 155 262–271

    Article  CAS  Google Scholar 

  • Haldane J B S 1941 New paths in genetics (London: Allen and Unwin)

    Google Scholar 

  • Harman D 1956 Aging: a theory based on free radical and radiation chemistry; J. Gerontol. 11 298–300

    Article  CAS  Google Scholar 

  • Haussmann M F, Winkler D W, O’Reilly K M, Huntington C E, Nisbet I C T and Vleck C M 2003 Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones; Proc. R. Soc. London B 270 1387–1392

    Article  CAS  Google Scholar 

  • Hawkins S and Boudet A 1996 Wound-induced lignin and suberin deposition in a woody angiosperm (Eucalyptus gunnii Hook.): Histochemistry of early changes in young plants; Protoplasma 191 96–104

    Article  Google Scholar 

  • Hayflick L and Moorehead P S 1961 The serial cultivation of human diploid cell strains; Exp. Cell Res. 25 585–621

    Article  CAS  Google Scholar 

  • Hughes R G 1987 The loss of hydranths of Laomedea flexuosa Alder and other hydroids, with reference to hydroid senescence; in Modern trends in the systematics, ecology, and evolution of hydroids and hydromedusae (eds) J Bouillon, F Boero, F Cicogna and P F S Cornelius (Oxford: Clarendon Press) pp 171–184

    Google Scholar 

  • Hulbert A J, Pamplona R, Buffenstein R and Buttemer W A 2007 Life and death: metabolic rate, membrane composition, and life span of animals; Physiol. Rev. 87 1175–1213

    Article  CAS  Google Scholar 

  • Ishii H and Ford E D 2001 The role of epicormic shoot production in maintaining foliage in old Pseudotsuga menziesii (Douglasfir) trees; Can. J. Bot. 79 251–264

    Google Scholar 

  • Jackson J B C and Coates A G 1986 Life cycles and evolution of clonal (modular) animals; Philos. Trans. R. Soc. London B 313 7–22

    Article  Google Scholar 

  • Keeley J E and Bond W J 1999 Mast flowering and semelparity in bamboos: the bamboo fire cycle hypothesis; Am. Nat. 154 383–391

    Article  Google Scholar 

  • Kirkwood T B L 2005 Understanding the odd science of aging; Cell 120 437–447

    Article  CAS  Google Scholar 

  • Kirkwood T B L 1977 Evolution of ageing; Nature (London) 270 301–304.

    Article  CAS  Google Scholar 

  • Kirkwood T B L and Austad S N 2000 Why do we age?; Nature (London) 408 233–238

    Article  CAS  Google Scholar 

  • Kleiber M 1961 The fire of life: an introduction to animal energetics (New York: John Wiley and Sons)

    Google Scholar 

  • Lanner R M 2002 Why do trees live so long?; Ageing Rev. Res. 1 653–671

    Article  Google Scholar 

  • Lanner R M and Connor K F 2001 Does bristlecone pine senesce?; Exp. Gerontol. 36 675–685

    Article  CAS  Google Scholar 

  • Liang Y and Van Zant G 2008 Aging stem cells, latexin, and longevity; Exp. Cell Res. 314 1962–1972

    Article  CAS  Google Scholar 

  • Lu T and Finkel T 2008 Free radicals and senescence; Exp. Cell Res. 314 1918–1922

    Article  CAS  Google Scholar 

  • Lynch A J J, Barnes R W, Cambecèdes J and Vaillancourt R E 1998 Genetic evidence that Lomatia tasmanica (Proteaceae) is an ancient clone; Austr. J. Bot. 46 25–33

    Article  Google Scholar 

  • Martínez D E 1998 Mortality patterns suggest lack of senescence in Hydra; Exp. Gerontol. 33 217–225

    Article  Google Scholar 

  • Medawar P B 1952 An unsolved problem in biology (London: H K Lewis)

    Google Scholar 

  • Mocchegiani E, Giacconi R, Muti E, Cipriano C, Costarelli L, Tesei S, Gasparini N and Malavolta M 2007 Zinc-bound metallothioneins and immune plasticity: lessons from very old mice and humans; Immun. Ageing 47 doi: 10.1186/1742-4933-4-7

  • Monaghan P, Charmantier A, Nussey D H and Ricklefs R E 2008 The evolutionary ecology of senescence; Func. Ecol. 22 371–378

    Article  Google Scholar 

  • Moore K A and Lemischka I R 2006 Stem cells and their niches; Science 311 1880–1885

    Article  CAS  Google Scholar 

  • Morris W F, Pfister C A, Tuljapurkar S, Haridas C V, Boggs C L, Boyce M S, Bruna E M, Church D R, Coulson T, Doak D F, Forsyth S, Gaillard J-M, Horvitz C C, Kalisz S, Kendall B E, Knight T M, Lee C T and Menges E S 2008 Longevity can buffer plant and animal populations against changing climatic variability; Ecology 89 19–25

    Article  Google Scholar 

  • Munné-Bosch S 2008 Do perennials really senesce?; Trends Plant Sci. 13 216–220

    Article  Google Scholar 

  • Munné-Bosch S 2007 Aging in perennials; Crit. Rev. Plant Sci. 26 123–38.

    Article  Google Scholar 

  • Munné-Bosch S, Jubany-Marí T, and Alegre L 2001 Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts; Plant Cell Environ. 24 1319–1327

    Article  Google Scholar 

  • Nicolini E, Caraglio Y, Pelissier R, Leroy C and Roggy J C 2003 Epicormic branches: a growth indicator for the tropical forest tree, Dicorynia guianensis Amshoff (Caesalpiniaceae); Ann. Bot. 92 97–105

    Article  Google Scholar 

  • Niklas K J 1994 Plant allometry. The scaling of form and process (Chicago: University of Chicago Press)

    Google Scholar 

  • Noodén L, Guiamet J and John I 1997 Senescence mechanisms; Physiol. Plant. 101 746–753

    Article  Google Scholar 

  • Noodén L and Leopold A C 1988 Senescence and aging in plants (San Diego: Academic Press)

    Google Scholar 

  • Orians C 2005 Herbivores, vascular pathways, and systemic induction: facts and artifacts; J. Chem. Ecol. 31 2231–2242

    Article  CAS  Google Scholar 

  • Paciorek C J, Condit R, Hubbell S P and Foster R B 2000 The demographics of resprouting in tree and shrub species of a moist tropical forest; J. Ecol. 88 765–777

    Article  Google Scholar 

  • Partridge L and Gems D 2002 The evolution of longevity; Curr. Biol. 12 R544–546

    Article  CAS  Google Scholar 

  • Passos J F, von Zglinicki T and Kirkwood T B L 2007 Mitochondria and ageing: winning and losing in the numbers game; BioEssays 29 908–917

    Article  CAS  Google Scholar 

  • Peters R H 1983 The ecological implications of body size (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  • Powell J and Caccone A 2006 Giant tortoises; Curr. Biol. 16 R144–145

    Article  CAS  Google Scholar 

  • Ricklefs R E 2008 The evolution of senescence from a comparative perspective; Func. Ecol. 22 379–392

    Article  Google Scholar 

  • Rohde A and Bhalerao R P 2007 Plant dormancy in the perennial context; Trends Plant Sci. 12 217–223

    Article  CAS  Google Scholar 

  • Roobrouck V D, Ulloa-Montoya F and Verfaillie C M 2008 Selfrenewal and differentiation capacity of young and aged stem cells; Exp. Cell Res. 314 1937–1944

    Article  CAS  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T and Carrer M 2008 Age-dependent xylogenesis in timberline conifers; New Phytol. 177 199–208

    PubMed  Google Scholar 

  • Rottenberg H 2007a Exceptional longevity in songbirds is associated with high rates of evolution of cytochrome b, suggesting selection for reduced generation of free radicals; J. Exp. Biol. 210 2170–2180

    Article  CAS  Google Scholar 

  • Rottenberg H 2007b Coevolution of exceptional longevity, exceptionally high metabolic rates, and mitochondrial DNA-coded proteins in mammals; Exp. Gerontol. 42 364–373

    Article  CAS  Google Scholar 

  • Salomonson A 1996 Interactions between somatic mutations and plant development; Vegetatio 127 71–75

    Article  Google Scholar 

  • Sebens K P 1983 Population-dynamics and habitat suitability of the intertidal sea-anemones Anthopleura elegantissima and Anthopleura xanthogrammica; Ecol. Monogr. 53 405–433

    Article  Google Scholar 

  • Sedivy J M, Banumathy G and Adams P D 2008 Aging by epigenetics—A consequence of chromatin damage?; Exp. Cell Res. 314 1909–1917

    Article  CAS  Google Scholar 

  • Seymour R M and Doncaster C P 2007 Density dependence triggers runaway selection of reduced senescence; PLoS Comp. Biol. 3 e256 doi:10.1371/journal.pcbi.0030256

    Article  Google Scholar 

  • Smith G 2004 Evolution of salmon life histories; Evolution 58 1634–1636

    Google Scholar 

  • Thomas H 2003 Do green plants age, and if so, how?; Topics Curr. Genet. 3 145–171

    Article  Google Scholar 

  • Venable D L and Brown J S 1988 The selective interactions of dispersal, dormancy and seed size as adaptations for reducing risk in variable environments; Am. Nat. 131 360–384

    Article  Google Scholar 

  • Watkinson A 1992 Plant senescence; Trends Ecol. Evol. 7 417–420

    Article  CAS  Google Scholar 

  • Watkinson A R and White J 1985 Some life-history consequences of modular construction in plants; Philos. Trans. R. Soc. London B 313 31–51

    Article  Google Scholar 

  • Williams G C 1957 Pleiotropy, natural selection and the evolution of senescence; Evolution 11 398–411

    Article  Google Scholar 

  • Williamson G B, van Eldik T, Delamônica P and Laurance W F 1999 How many millenarians in Amazonia? Sizing the ages of large trees; Trends Plant Sci. 4 387

    Article  CAS  Google Scholar 

  • Wright W E, Piatyszek M A, Rainey W E, Byrd W and Shay J W 1996 Telomerase activity in human germline and embryonic tissues and cells; Dev. Genet. 18 173–179

    Article  CAS  Google Scholar 

  • Wright W E and Shay J W 2000 Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology; Nat. Med. 6 849–851

    Article  CAS  Google Scholar 

  • Xiao S, Wang W and Yang X 2008 Evolution of resistance genes in plants; in Innate immunity of plants, animals, and humans (ed.) H Heine (Berlin: Springer-Verlag) pp 1–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renee M. Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, R.M. Phenotypic plasticity and longevity in plants and animals: cause and effect?. J Biosci 34, 605–611 (2009). https://doi.org/10.1007/s12038-009-0078-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0078-3

Keywords

Navigation