Skip to main content
Log in

Structural transition in alcohol-water binary mixtures: A spectroscopic study

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol concentration in ethanol-water and tertiary butanol (TBA) — water mixtures have been studied by using both steady state and time resolved spectroscopy. Absorption and emission characteristics of coumarin 153 (C153), a widely used non-reactive solvation probe, have been monitored to investigate the structural transition in these binary mixtures. The effects of the hydrogen bond (H-bond) network with alcohol concentration are revealed by a minimum in the peak frequency of the absorption spectrum of C153 which occur at alcohol mole fraction ∼0·10 for water-ethanol and at ∼0·04 for water-TBA mixtures. These are the mole fractions around which several thermodynamic properties of these mixtures show anomalous change due to the enhancement of H-bonding network. While the strengthening of H-bond network is revealed by the absorption spectra, the emission characteristics show the typical non-ideal alcohol mole fraction dependence at all concentrations. The time resolved anisotropy decay of C153 has been found to be bi-exponential at all alcohol mole fractions. The sharp change in slopes of average rotational correlation time with alcohol mole fraction indicates the structural transition in the environment around the rotating solute. The changes in slopes occur at mole fraction ∼0·10 for TBA-water and at ∼0·2 for ethanol-water mixtures, which are believed to reflect alcohol mole fraction induced structural changes in these alcohol-water binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franks F and Ives D J G 1966 Q. Rev. Chem. Soc. 20 1

    Article  CAS  Google Scholar 

  2. Zeidler M D 1973 In Water, a comprehensive treatise (ed.) F Franks (New York: Plenum), vol 2, p 529

    Google Scholar 

  3. Arnett E M and McKlevey D R 1966 J. Am. Chem. Soc. 88 5031

    Article  CAS  Google Scholar 

  4. Arnett E M and McKlevey D R 1965 J. Am. Chem. Soc. 87 1393

    Article  CAS  Google Scholar 

  5. Arnett E M, Bentrude W G, Burke J J and Duggleby P M 1965 J. Am. Chem. Soc. 87 1541

    Article  CAS  Google Scholar 

  6. Beddard G S, Doust T and Hudales J 1981 Nature 294 145

    Article  CAS  Google Scholar 

  7. Dixit S, Crain J, Poon W C K, Finney J L and Soper A K 2002 Nature 416 829

    Article  CAS  Google Scholar 

  8. Soper A K and Finney J L 1993 Phys. Rev. Lett. 71 4346

    Article  CAS  Google Scholar 

  9. Brai M and Kaatze U 1992 J. Phys. Chem. 90 8946

    Article  Google Scholar 

  10. Dutt G B and Doraiswamy S 1992 J. Chem. Phys. 96 2475

    Article  CAS  Google Scholar 

  11. Dutt G B, Doraiswamy S and Periasamy N 1991 J. Chem. Phys. 94 2475

    Article  Google Scholar 

  12. Murthy S S N 1999 J. Phys. Chem. A103 7927

    Google Scholar 

  13. Wojkow D and Czarnecki M A 2005 J. Phys. Chem. A109 8218

    Google Scholar 

  14. Iwasaki K and Fujiyama T 1979 J. Phys. Chem. 83 463; Iwasaki K and Fujiyama T 1977 J. Phys. Chem. 81 1908

    Article  CAS  Google Scholar 

  15. D’Angelo M, Onori G and Santucci A 1994 J. Chem. Phys. 100 3107

    Article  CAS  Google Scholar 

  16. Egashira K and Nishi N 1998 J. Phys. Chem. B102 4054

    Google Scholar 

  17. Nishikawa K and Iijima T 1993 J. Phys. Chem. 97 10824

    Google Scholar 

  18. Yoshida K and Yamaguchi T 2001 Z. Natuforsch. A56 529

    Google Scholar 

  19. Nishikawa K, Kodera Y and Iijima T 1987 J. Phys. Chem. 91 3694

    Article  CAS  Google Scholar 

  20. Koga Y 1984 Chem. Phys. Lett. 111 176

    Article  CAS  Google Scholar 

  21. Sato T and Buchner R 2003 J. Chem. Phys. 119 10789

    Google Scholar 

  22. Nakanishi K, Ikari K, Okazaki S and Touhara H 1984 J. Chem. Phys. 80 1656

    Article  CAS  Google Scholar 

  23. Kusalik P G, Lyubertsev A P, Bergman D L and Laaksonen A 2000 J. Phys. Chem. B104 9533

    Google Scholar 

  24. Laaksonen A, Kusalik P G and Svishchev I M 1997 J. Phys. Chem. A101 5910

    Google Scholar 

  25. Yoshida K, Yamaguchi T, Kovalenko A and Hirata F 2002 J. Phys. Chem. B106 5042

    Google Scholar 

  26. Perera A, Sokolic F, Almasy L and Koga Y 2006 J. Chem. Phys. 124 124515

  27. Ben-Naim A 1977 J. Chem. Phys. 67 4884

    Article  CAS  Google Scholar 

  28. Bowron D T and Finney J L 2007 J. Phys. Chem. B111 9838

    Google Scholar 

  29. Lisa L, Loon V, Minor R N and Allen H C 2007 J. Phys. Chem. A111 7346

    Google Scholar 

  30. Hu K, Zhou Y, Shen J, Ji Z and Cheng G 2007 J. Phys. Chem. B111 10160

  31. Templeton E F G and Kenney-Wallace G A 1986 J. Phys. Chem. 90 5441

    Article  CAS  Google Scholar 

  32. Iwasaki K and Fujiyama T 1977 J. Phys. Chem. 81 1908

    Article  CAS  Google Scholar 

  33. Iwasaki K and Fujiyama T 1979 J. Phys. Chem. 83 463

    Article  CAS  Google Scholar 

  34. Euliss G W and Sorensen C M 1984 J. Chem. Phys. 80 4767

    Article  CAS  Google Scholar 

  35. Kaatze U, Pottel R and Schmidt P 1988 J. Phys. Chem. 92 3669; Kaatze U, Pottel R and Schmidt P 1989 J. Phys. Chem. 93 5623

    Article  CAS  Google Scholar 

  36. Kaatze U, Menzel K and Pottel R 1991 J. Phys. Chem. 95 324

    Article  CAS  Google Scholar 

  37. Svishchev I M and Kusalik, P G 1993 J. Chem. Phys. 99 3049

    Article  CAS  Google Scholar 

  38. Omelyan I, Kovalenko A and Hirata F 2003 J. Theor. Comput. Chem. 2 193

    Article  CAS  Google Scholar 

  39. Chandra A and Bagchi B 1991 J. Chem. Phys. 94 8367

    Article  CAS  Google Scholar 

  40. Bagchi B and Biswas R 1999 Adv. Chem. Phys. 109 207

    Article  CAS  Google Scholar 

  41. Cichos F, Willert A, Rempel U and von Borczyskowski C 1997 J. Phys. Chem. A101 8179

    Google Scholar 

  42. Luther B M, Kimmel J R and Levinger N E 2002 J. Chem. Phys. 116 3370

    Article  CAS  Google Scholar 

  43. Chandra A 1995 Chem. Phys. Lett. 235 133

    Article  CAS  Google Scholar 

  44. Jarzeba W, Walker G C, Johnson A E and Barbara P F 1991 Chem. Phys. 152 57

    Article  CAS  Google Scholar 

  45. Gardecki J A and Maroncelli M 1999 Chem. Phys. Lett. 301 571

    Article  CAS  Google Scholar 

  46. Ladanyi B M and Skaf M S 1996 J. Phys. Chem. A100 18258

    Google Scholar 

  47. Laria D and Skaf M S 1999 J. Chem. Phys. 111 300

    Article  CAS  Google Scholar 

  48. Day T J F and Patey G N 1997 J. Chem. Phys. 106 2782

    Article  CAS  Google Scholar 

  49. Day T J F and Patey G N 1999 J. Chem. Phys. 110 10937

    Google Scholar 

  50. Yoshimori A, Day T J F and Patey G N 1998 J. Chem. Phys. 108 6378

    Article  CAS  Google Scholar 

  51. Yoshimori A, Day T J F and Patey G N 1998 J. Chem. Phys. 109 3222

    Article  CAS  Google Scholar 

  52. Bowron D T and Moreno S D 2005 J. Phys. Chem. B109 16210

    Google Scholar 

  53. Kashyap H K and Biswas R 2007 J. Chem. Phys. 127 184502

    Google Scholar 

  54. Kashyap H K and Biswas R 2007 J. Chem. Sci. 119 391

    Article  CAS  Google Scholar 

  55. Horng M L, Gardecki J A, Papazyan A and Maroncelli M 1995 J. Phys. Chem. B99 17311

  56. Reynolds L, Gardecki J, Frankland S J, Horng M L and Maroncelli M 1996 J. Phys. Chem. 100 10337

  57. Biswas R, Lewis J E and Maroncelli M 1999 Chem. Phys. Lett. 310 485

    Article  CAS  Google Scholar 

  58. Lewis J E, Biswas, R, Robinson A G and Maroncelli M 2001 J. Phys. Chem. B105 3306

    Google Scholar 

  59. Pradhan T and Biswas R 2007 J. Phys. Chem. A111 11514

    Google Scholar 

  60. Pradhan T and Biswas R 2007 J. Phys. Chem. A111 11524

    Google Scholar 

  61. Dahl K, Biswas R, Ito N and Maroncelli M 2005 J. Phys. Chem. B109 1563

    Google Scholar 

  62. Lewis J E and Maroncelli M 1998 Chem. Phys. Lett. 282 197

    Article  CAS  Google Scholar 

  63. Horng M L, Gardecki J A and Maroncelli M 1997 J. Phys. Chem. A101 1030

    Google Scholar 

  64. Nishi N and Yamamoto K 1987 J. Am. Chem. Soc. 109 7353

    Article  CAS  Google Scholar 

  65. Nishi N, Koga K, Ohsima C, Yamamoto K, Nagashima U and Nagami K 1988 J. Am. Chem. Soc. 110 5246

    Article  CAS  Google Scholar 

  66. Pradhan T, Ghoshal P and Biswas R 2008 J. Phys. Chem. A 112 915

    Article  CAS  Google Scholar 

  67. Bagchi B and Bhattacharyya S 2001 Adv. Chem. Phys. 116 67

    Article  CAS  Google Scholar 

  68. Maroncelli M and Fleming G R 1987 J. Chem. Phys. 86 6221

    Article  CAS  Google Scholar 

  69. Baumann R, Ferrante C, Kneuper E, Deeg F-W and Brauchle C 2003 J. Phys. Chem. A107 2422

    Google Scholar 

  70. Biswas R and Bagchi B 1996 J. Chem. Phys. 105 207

    Article  Google Scholar 

  71. Biswas R unpublished results

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit Biswas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, T., Ghoshal, P. & Biswas, R. Structural transition in alcohol-water binary mixtures: A spectroscopic study. J Chem Sci 120, 275–287 (2008). https://doi.org/10.1007/s12039-008-0033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-008-0033-0

Keywords

Navigation