Skip to main content
Log in

Study of multi-site chemical exchange in solution state by NMR: 1D experiments with multiply selective excitation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Chemical exchange in solution state has been investigated traditionally by both 1D and 2D NMR, permitting the extraction of kinetic parameters (e.g. the spin-lattice relaxation time T 1, the exchange rate constant k and the activation parameters). This work demonstrates a simple 1D NMR approach employing multiply selective excitation to study multi-site exchange processes in solution, applying it to systems that exhibit three-site exchange. This approach involves simultaneous excitation of all — or a chosen subset of — the exchanging sites by using an appropriately modulated shaped radiofrequency pulse. The pulse sequence, as well as analysis is summarized. Significant features of the experiment, which relies on sign labelling of the exchanging sites, include considerably shorter experiment time compared to standard 2D exchange work, clear definition of the exchange time window and uniform pulse non-ideality effects for all the exchanging sites. Complete kinetic information is reported in the study of dynamic processes in superacid solutions of two weak bases, studied by 1H NMR. An analytical solution, leading to the determination of four rate parameters, is presented for proton exchange studies on these systems, which involve a mixture of two weak bases in arbitrary concentration ratio, and stoichiometric excess of the superacid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gutowsky H S and Saika A 1953 J. Chem. Phys. 21 1688

    Article  CAS  Google Scholar 

  2. Jackmann L M and Cotton F A (eds) 1975 Dynamic NMR spectroscopy (New York: Academic Press)

    Google Scholar 

  3. Forsén S and Hoffman R A 1963 J. Chem. Phys. 39 2892

    Article  Google Scholar 

  4. Forsén S and Hoffman R A 1964 J. Chem. Phys. 40 1189

    Article  Google Scholar 

  5. Inglefield P T, Krakower E, Reevs L W and Stewart R 1968 Mol. Phys. 15 65

    Article  CAS  Google Scholar 

  6. Dahlquist W, Longmuir K J and DuVernet R B 1975 J. Magn. Reson. 17 406

    CAS  Google Scholar 

  7. Campbell D, Dobson C M and Ratcliffe R G 1977 J. Magn. Reson. 27 455

    CAS  Google Scholar 

  8. Gutowsky S, Vold R L and Wells E J 1965 J. Chem. Phys. 43 4107

    Article  CAS  Google Scholar 

  9. Muhandiram D R and McClung R E D 1987 J. Magn. Reson. 71 187

    CAS  Google Scholar 

  10. Levy G C and Nelson G 1972 J. Am. Chem. Soc. 94 4897

    Article  CAS  Google Scholar 

  11. Spencer R G S 2000 J. Magn. Reson. 142 120

    Article  CAS  Google Scholar 

  12. Jeener J, Meier B H, Bachmann P and Ernst R R 1979 J. Chem. Phys. 71 4546

    Article  CAS  Google Scholar 

  13. Macura S and Ernst R R 1982 J. Magn. Reson. 46 269

    CAS  Google Scholar 

  14. Perrin C L 1989 J. Magn. Reson. 82 619

    CAS  Google Scholar 

  15. Abel E W, Coston T P J, Orrell K G, Šik V and Stephenson D 1986 J. Magn. Reson. 70 34

    CAS  Google Scholar 

  16. Yarnykh V L and Ustynyuk Y A 1993 J. Magn. Reson. A102 131

    Google Scholar 

  17. Bremer J 1984 J. Am. Chem. Soc. 106 4691

    Article  CAS  Google Scholar 

  18. Campbell D, Dobson C M, Ratcliffe R G and Williams R J P 1978 J. Magn. Reson. 29 397

    CAS  Google Scholar 

  19. Rabinovitz M and Pines A 1969 J. Am. Chem. Soc. 91 1585

    Article  CAS  Google Scholar 

  20. Mann B E 1976 J. Magn. Reson. 21 17

    CAS  Google Scholar 

  21. Mann B E 1977 J. Magn. Reson. 25 91

    CAS  Google Scholar 

  22. Grassi M, Mann B E, Pickup B T and Spencer C M 1986 J. Magn. Reson. 69 92

    CAS  Google Scholar 

  23. McClung R E D and Aarts G H M 1995 J. Magn. Reson. A115 145

    Google Scholar 

  24. Bain A D and Cramer J A 1993 J. Magn. Reson. A103 217

    Google Scholar 

  25. Bain A D and Cramer J A 1996 J. Magn. Reson. A118 21

    Google Scholar 

  26. Cavanagh J, Fairbrother W J, Palmer A G and Skelton N J 1996 Protein NMR spectroscopy. Principles and practice (San Diego, CA: Academic Press)

    Google Scholar 

  27. Zhou J and van Ziji P C 2006 Prog. Nucl. Magn. Reson. Spectroc. 48 109

    Article  CAS  Google Scholar 

  28. Galban J and Spencer R G 2007 Magn. Reson. Med. 58 8

    Article  CAS  Google Scholar 

  29. Lucchini V, Borsato G, Canovese L, Santo C, Visentin F and Zambon A 2009 Inorg. Chim. Acta 362 2715

    Article  CAS  Google Scholar 

  30. Hirose K, Ishibashi K, Shiba Y, Doi Y and Tobe Y 2008 Chem. Eur. J. 14 5803

    Article  CAS  Google Scholar 

  31. Bodenhausen G, Zwahlen C, Vincent S J F and Schwager M 1996 Chem. Eur. J. 2 45

    Article  Google Scholar 

  32. Shapira B and Frydman L 2003 J. Magn. Reson. 165 320

    Article  CAS  Google Scholar 

  33. Perrin C L and Engler R E 1996 J. Magn. Reson. A123 188

    Google Scholar 

  34. Bain A D, Bell R A, Fletcher D A, Hazendonk P, Maharajh R A, Rigby S and Valliant J F 1999 J. Chem. Soc., Perkin Trans. II 144 7

    Google Scholar 

  35. Heaton B T, Jacob C, Podkorytov I S and Tunik S P 2006 Inorg. Chim. Acta 359 3557

    Article  CAS  Google Scholar 

  36. Gold V, Laali K, Morris K P and Zdunek L Z 1981 J. Chem. Soc. Chem. Comm. 769

  37. Gold V, Laali K, Morris K P and Zdunek, L Z 1985 J. Chem. Soc., Perkin Trans. II 859

  38. Bauer C, Freeman R, Frenkiel T, Keeler J and Shaka A J 1984 J. Magn. Reson. 58 442

    CAS  Google Scholar 

  39. Hadamard J 1893 Bull. Sci. Math. 17 240

    Google Scholar 

  40. Olah G A and Schlosberg R H 1968 J. Am. Chem. Soc. 90 2726

    Article  CAS  Google Scholar 

  41. Olah G A 2005 J. Org. Chem. 70 2413

    Article  CAS  Google Scholar 

  42. McConnell H M 1958 J. Chem. Phys. 28 430

    Article  CAS  Google Scholar 

  43. Bain A D and Cramer J A 1993 J. Phys. Chem. 97 2884

    Article  CAS  Google Scholar 

  44. Steigel A 1978 NMR Basic principles and progress (eds) P Diehl, E Fluck and R Kosfeld (Heidelberg: Springer-Verlag: Berlin) p. 15

    Google Scholar 

  45. Perrin C L and Gipe R K 1984 J. Am. Chem. Soc. 106 4036

    Article  CAS  Google Scholar 

  46. Perrin C L and Johnston E R 1979 J. Magn. Reson. 33 619

    CAS  Google Scholar 

  47. Ugurbil K 1985 J. Magn. Reson. 64 207

    CAS  Google Scholar 

  48. Ernst R R, Bodenhausen G and Wokaun W 1987 Principles of nuclear magnetic resonance in one and two dimensions (Oxford: Oxford University Press)

    Google Scholar 

  49. Bain A D 2003 Prog. Nucl. Magn. Reson. 43 63

    Article  CAS  Google Scholar 

  50. Bain A D 2008 Ann. Rep. NMR Spectroc. 63 23

    Article  CAS  Google Scholar 

  51. Gold V, Laali K, Morris K P and Zdunek L Z 1985 J. Chem. Soc. Perkin Trans. II 865

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samanwita Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S. Study of multi-site chemical exchange in solution state by NMR: 1D experiments with multiply selective excitation. J Chem Sci 122, 471–480 (2010). https://doi.org/10.1007/s12039-010-0082-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-010-0082-z

Keywords

Navigation