Skip to main content
Log in

Synthesis, characterization and photoluminescence properties of graphene oxide functionalized with azo molecules

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Two different azo molecules functionalized graphene oxide (GO) through an ester linkage have been synthesized for the first time. Chemical structure of the azo-GO hybrids was confirmed by Fourier transform infrared spectroscopy and UV-visible spectroscopy. The GO functionalized with 5-((4-methoxyphenyl)azo)-salicylaldehyde was further characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The SEM studies demonstrated that the morphology of the azo-GO hybrid was found to be similar to the GO sheets but slightly more wrinkled. Further, TEM image of azo-GO indicates some dark spots on the GO sheets due to azo functionalization. AFM results also reveal that the azo functionalization increases the thickness of GO sheet to 4–5 nm from 1.2–1.8 nm. Both the azo-hybrids show absorption band around 379 nm due to the ππ* transition of the trans azo units. Photoluminescence spectra of azo-GO hybrids show a strong quenching compared with azo molecules due to the photoinduced electron or energy transfer from the azo chromophore to the GO sheets. It also reveals strong electronic interaction between azo and GO sheets.

Graphene oxide functionalized with two different azo molecules through an ester linkage have been synthesized and characterized. Photoluminescence spectra of azo-GO hybrids show strong quenching compared with azo molecules due to the photo-induced electron or energy transfer from the azo chromophore to the GO sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Willner I 1997 ACC. Chem. Res. 30 347

    Article  CAS  Google Scholar 

  2. Renner C and Moroder L 2006 Chem. Bio. Chem. 7 868

    Article  CAS  Google Scholar 

  3. Kanis D R, Ratner M A and Marks T J 1994 Chem. Rev. 94 195

    Article  CAS  Google Scholar 

  4. Feringa B L, van Delden R A, Koumura N and Geertsema E M 2000 Chem. Rev. 100 1789

    Article  CAS  Google Scholar 

  5. Ikeda T and Tsutsumi O 1995 Science 268 1873

    Article  CAS  Google Scholar 

  6. Bhardwaj V K, Singh N, Hundal M S and Hundal G 2006 Tetrahedron 62 7878

    Article  CAS  Google Scholar 

  7. Mikroyannidis J A, Tsagkournos D V, Balraju P and Sharma G D 2011 J. Power Sources 196 4152

    Article  CAS  Google Scholar 

  8. Simmons J M, In I, Campbell V E, Mark T J, Leonard F, Gopalan P and Eriksson M A 2007 Phys. Rev. Lett. 98 086802

    Article  CAS  Google Scholar 

  9. Yager K G and Barrett C J 2001 Curr. Opin. Solid State Mater. Sci. 5 487

    Article  CAS  Google Scholar 

  10. Yager K G and Barrett C J 2006 J. Photochem. Photobiol. A182 250

    Article  Google Scholar 

  11. Nikolaev A V, Bibikov A V, Avdeenkov A V, Bodrenko I V and Tkalya E V 2009 Phys. Rev. B79 045418

    Article  Google Scholar 

  12. Tsoukleri G, Parthenios J, Papagelis K, Jalil R, Ferrari A C, Geim A K, Novoselov K S and Galiotis C 2009 Small 5 2397

    Article  CAS  Google Scholar 

  13. Rafiee M A, Rafiee J, Srivastava I, Wang Z, Song H, Yu Z-Z and Koratkar N 2010 Small 6 179

    Article  CAS  Google Scholar 

  14. Zhou X, Wu T, Ding K, Hu B, Hou M and Han B 2010 Chem. Commun. 46 386

    Article  CAS  Google Scholar 

  15. Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229

    Article  CAS  Google Scholar 

  16. Geim A K and Novoselov K S 2007 Nat. Mater. 6 183

    Article  CAS  Google Scholar 

  17. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W and Chen Y 2008 Adv. Mater. 20 3924

    Article  CAS  Google Scholar 

  18. Gilje S, Han S, Wang M, Wang K L and Kaner R B 2007 Nano Lett. 7 3394

    Article  CAS  Google Scholar 

  19. Hao R, Qian W, Zhang L and Hou Y 2008 Chem. Commun. 0 6576

    Article  CAS  Google Scholar 

  20. Ajayan P M 1999 Chem. Rev. 99 1787

    Article  CAS  Google Scholar 

  21. Martin N, Sanchez L, Illescas B and Perez I 1998 Chem. Rev. 98 2527

    Article  CAS  Google Scholar 

  22. Niyogi S, Bekyarova E, Itkis M E, McWilliams J L, Hamon M A and Haddon R C 2006 J. Am. Chem. Soc. 128 7720

    Article  CAS  Google Scholar 

  23. Stankovich S, Piner R D, Nguyen S T and Ruoff R S 2006 Carbon 44 3342

    Article  CAS  Google Scholar 

  24. Si Y and Samulski E T 2008 Nano Lett. 8 1679

    Article  CAS  Google Scholar 

  25. Qian W, Cui X, Hao R, Hou Y and Zhang Z 2011 ACS Appl. Mater. Interfaces 3 2259

    Article  CAS  Google Scholar 

  26. Qian W, Hao R, Hou Y, Tian Y, Shen C, Gao H and Liang X 2009 Nano Res. 2 706

    Article  CAS  Google Scholar 

  27. Cui X, Zhang C, Hao R and Hou Y 2011 Nanoscale 3 2118

    Article  CAS  Google Scholar 

  28. Gomez-Navarro C, Burghard M and Kern K 2008 Nano Lett. 8 2045

    Article  CAS  Google Scholar 

  29. Yamuna R, Ramakrishnan S, Dhara K, Devi R, Kothurkar N, Kirubha E and Palanisamy P K 2013 J. Nanopart. Res. 15 1

    Google Scholar 

  30. Hummers W S and Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    Article  CAS  Google Scholar 

  31. Kolpak A M and Grossman J C 2011 Nano Lett. 11 3156

    Article  CAS  Google Scholar 

  32. Zhang X, Feng Y, Lv P, Shen Y and Feng W 2010 Langmuir 26 18508

    Article  CAS  Google Scholar 

  33. Wang D and Wang X 2010 Langmuir 27 2007

    Article  Google Scholar 

  34. Wang D, Ye G, Wang X and Wang X 2011 Adv. Mater. 23 1122

    Article  CAS  Google Scholar 

  35. Yeh T-F, Syu J-M, Cheng C, Chang T-H and Teng H 2010 Adv. Funct. Mater. 20 2255

    Article  CAS  Google Scholar 

  36. Albayrak C, Gumrukcuoglu I E, Odabasoglu M, Iskeleli N O and Agar E 2009 J. Mol. Struct. 932 43

    Article  CAS  Google Scholar 

  37. Deng Y, Li Y, Dai J, Lang M and Huang X 2011 J. Polym. Sci. Part A: Polym. Chem. 49 4747

    Article  CAS  Google Scholar 

  38. Akhavan O 2010 Carbon 48 509

    Article  CAS  Google Scholar 

  39. Subrahmanyam K S, Vivekchand S R C, Govindaraj A and Rao C N R 2008 J. Mater. Chem. 18 1517

    Article  CAS  Google Scholar 

  40. Geng J and Jung H-T 2010 J. Phys. Chem. C 114 8227

    Article  CAS  Google Scholar 

  41. Lahaye R J W E, Jeong H K, Park C Y and Lee Y H 2009 Phys. Rev. B79 125435

    Article  Google Scholar 

  42. Gokulnath S, Prabhuraja V, Sankar J and Chandrashekar T K 2007 Eur. J. Org. Chem. 2007 191

    Article  Google Scholar 

Download references

Acknowledgements

The authors RY and RD thank the Council of Scientific and Industrial Research (CSIR), (Project No: 01(2256)/08/EMR-II), New Delhi, India for funding and Amrita Vishwa Vidyapeetham for infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R YAMUNA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 2.41 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DEVI, R., PRABHAVATHI, G., YAMUNA, R. et al. Synthesis, characterization and photoluminescence properties of graphene oxide functionalized with azo molecules. J Chem Sci 126, 75–83 (2014). https://doi.org/10.1007/s12039-013-0536-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0536-1

Keywords

Navigation