Skip to main content
Log in

Could glutaric acid (GA) replace glutaraldehyde in the preparation of biocompatible biopolymers with high mechanical and thermal properties?

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In the field of natural and/or synthetic polymer preparation and stabilization, glutaraldehyde is the most commonly used cross-linker. Glutaraldehyde is focused by several scientists due its ease of cross-linking ability through the formation of Schiff base type of compound. Though glutaraldehyde cross-linked product has several advantages, the main drawback lies with the toxicity and poor mechanical stability. The poor mechanical strength of glutaraldehyde cross-linked product is due to the bonding pattern (–C=N–) between glutaraldehyde and amine group containing compound, where, there is a large energy barrier to rotation associated with groups joined by double bond. This is the time to search for an alternative cross-linker which will provide a non-toxic and mechanically stable biopolymer material. In order to achieve the requisite property, in the present study, we have chosen glutaric acid (oxidized form of glutaraldehyde) and studied its interaction with chitosan and type- I collagen. The chemistry behind the interaction and the characteristics of the biopolymer material obtained upon cross-linking suggests that non-covalent interactions play a major role in deciding the property of the said materials and its suitability for biomedical applications.

Present study describes the chemistry behind the interaction between glutaric acid (oxidized form of glutaraldehyde) and chitosan and type- I collagen. The characteristics of the biopolymers obtained upon cross-linking suggest noncovalent interactions play the major role in deciding the property of the prepared materials and its suitability for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Figure 5a
Figure 5b
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Storck M, Orend K H and Schmitz-Rixen T 1993 Vasc. Endovasc. Surg. 27 413

    Article  Google Scholar 

  2. Hashimoto K, Sudo M, Sugimura T and Inagaki Y 2004 J. Appl. Polym. Sci. 92 3492

    Article  CAS  Google Scholar 

  3. Liu Y, Guo L K, Huang L and Deng X M 2003 J. Appl. Polym. Sci. 90 3150

    Article  CAS  Google Scholar 

  4. Engelmayr G C, Hildebrand D K, Sutherland F W H, Mayerand J E and Sacks M S 2003 Biomaterials 24 2523

    Article  CAS  Google Scholar 

  5. Bourke S L and Kohn J 2003 Adv Drug. Deliv. Rev. 55 447

    Article  CAS  Google Scholar 

  6. Ko H F, Feir C S and Kumta P N 2010 Philos. Trans. R Soc. A 368 1981

    Article  CAS  Google Scholar 

  7. Cooper A, Bhattarai N and Zhang M 2011 Carb. Polym. 85 149

    Article  CAS  Google Scholar 

  8. Yan S, Zhang K, Liu Z, Zhang X, Gan L, Cao B, Chen X, Cui L and Yin J 2013 J. Mat. Chem. B. 1 1541

    Article  CAS  Google Scholar 

  9. Krishnamoorthy G, Sehgal P K, Mandal A B and Sadulla S 2013 J. Biomat. Sci. Polym. Ed. 24 1

    Article  Google Scholar 

  10. Li C, Wang L, Yang Z, Kim G, Chen H and Ge Z 2012 J. Biomat. Sci. Polym. Ed. 23 405

    Article  Google Scholar 

  11. Ballantyne B and Jordan S L 2001 J. Appl. Toxicol. 21 131

    Article  CAS  Google Scholar 

  12. Leung H W 2001 Ecotoxicol. Environ. Saf. 49 26

    Article  CAS  Google Scholar 

  13. Beauchamp R O, St Clair M B, Fennell T R, Clarke D O and Morgan K T 1992 Crit. Rev. Toxicol. 22 143

    Article  CAS  Google Scholar 

  14. Kamiya K T, Kamiya H, Kaji H and Kasai H 1997 Mutat. Res. 377 255

    Article  Google Scholar 

  15. Tual C, Espuche E, Escoubes M and Domard A J 2000 J. Polym. Sci., Part B: Polym. Phys. 38 1521

    Article  CAS  Google Scholar 

  16. Sheu M T, Huang J C, Yeh G C and Ho H O 2001 Biomaterials 22 1713

    Article  CAS  Google Scholar 

  17. Schiffman J D and Schauer C L 2007 Biomacromolecules 8 594

    Article  CAS  Google Scholar 

  18. Mi F L, Tan Y C, Liang H C, Huang and Sung H W 2001 J. Biomater. Sci. Polym. Ed. 12 835

    Article  CAS  Google Scholar 

  19. Horn H J, Holland E G and Hazleton L W 1957 J. Agric. Food. Chem. 5 759

    Article  CAS  Google Scholar 

  20. Mitra T, Sailakshmi G, Gnanamani A, Raja S T K, Thiruselvi T, Gowri V M, Selvaraj N V, Ramesh G and Mandal A B 2011 Int. J. Biol. Macromol. 48 276

    Article  CAS  Google Scholar 

  21. Bubnis W A and Ofner C M 1992 Anal. Biochem. 207 129

    Article  CAS  Google Scholar 

  22. ChemSketch A C D 2009 Version 12 (Toronto, ON, Canada: Advanced Chemistry Development Inc.)

  23. Madhan B, Subramanian V, Raghava Rao J, Nair B U and Ramasami T 2005 Int. J. Biol. Macromol. 37 47

    Article  CAS  Google Scholar 

  24. http://www.cgl.ucsf.edu./cgi-bin/gencollagen.py

  25. Morris G M, Huey R, Lindstrom W, Sanner M F, Belew R K, Goodsell D S and Olson A J 2009 J Comput. Chem. 30 2785

    Article  CAS  Google Scholar 

  26. Trentani L, Pelillo F, Pavesi F C, Ceciliani L, Cetta G and Forlino A 2002 Biomaterials 23 2863

    Article  CAS  Google Scholar 

  27. Mossmann T 1983 Immunol. Methods 65 55

    Article  Google Scholar 

  28. Majumder S, Siamwala J H, Srinivasan S, Sinha S, Sridharan S R C, Soundararajan G, Seerapu H P and Chatterjee S 2011 J. Cell. Biochem 112 1898

    Article  CAS  Google Scholar 

  29. Kim S E, Cho Y W, Kang E J, Kwon I C, Lee E B, Kim J H, Chung H and Jeong S Y 2001 Fiber Polym. 2 64

    Article  CAS  Google Scholar 

  30. Ohkawa K, Cha D I, Kim H, Nishida A and Yamamoto H 2004 Macromol. Rapid Commun. 25 1600

    Article  CAS  Google Scholar 

  31. El-Tahlawy K, Gaffar M A and El-Rafie S 2006 Carbohydr. Polym. 63 385

    Article  CAS  Google Scholar 

  32. Bhumkar D R and Pokharkar V B 2006 AAPS Pharm. Sci. Technol. 7 1

    Article  Google Scholar 

  33. Li Q X, Song B Z, Yang Z Q and Fan H L 2006 Carbohydr. Polym. 63 272

    Article  CAS  Google Scholar 

  34. Milosavljevic N B, Kljajevic L M, Popovic I G, Filipovic J M and Krusic M T K 2010 Polym. Inter. 59 686

    CAS  Google Scholar 

  35. Vijayaraghavan R, Thompson B C, MacFarlane D R, Ramadhar K, Surianarayanan M, Aishwarya S and Sehgal P K 2010 Chem. Commun. 46 294

    Article  CAS  Google Scholar 

  36. Chen P H, Hwang Y H, Kuo T Y, Liu F H, Lai J Y and Hsieh H J 2007 J. Med. & Biol. Eng. 27 23

    Google Scholar 

  37. Pavia D L, Lampman G M and Kriz G S 2001 Introduction to spectroscopy, Third edition (USA: Thomson Learning Inc.)

    Google Scholar 

  38. Wang Y, Ameer G A, Sheppard B J and Langer R 2002 Nat. Biotech. 20 602

    Article  CAS  Google Scholar 

  39. Jorge-Herrero E, Fernandez P, Turnay J, Olmo N, Calero P, Garcia R, Freile L and Castillo-Olivares J J 1999 Biomaterials 20 539

    Article  CAS  Google Scholar 

  40. Olde Damink L H H, Dijkstra M, Van Luyn M J A, Van Wachem P B, Nieuwenhuis P and Feijen J 1995 J. Mater. Sci. Mater. Med. 6 460

    Article  CAS  Google Scholar 

  41. Huang-Lee L L H, Cheung D T and Nimni M J 1990 J. Biomed. Mat. Res. 24 1185

    Article  CAS  Google Scholar 

  42. Van Luyn M J A, Van Wachen P B, Olde Damink L H H, Dijkstra P J, Feijen J and Nieuwenhuis P 1992 Biomaterials 13 1017

    Article  Google Scholar 

  43. Gough J E, Scotchford C A and Downes S 2002 J. Biomed. Mat. Res. 61 121

    Article  CAS  Google Scholar 

  44. Schmidt C E and Baier J M 2000 Biomaterials 21 2215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A GNANAMANI.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 272 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

MITRA, T., SAILAKSHMI, G. & GNANAMANI, A. Could glutaric acid (GA) replace glutaraldehyde in the preparation of biocompatible biopolymers with high mechanical and thermal properties?. J Chem Sci 126, 127–140 (2014). https://doi.org/10.1007/s12039-013-0543-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0543-2

Keywords

Navigation