Skip to main content
Log in

Electrocatalytic activity of Cu2O nanocubes based electrode for glucose oxidation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract.

A direct electrocatalytic activity of glucose oxidation on cuprous oxide modified glassy carbon electrode is reported. Cu2O nanocubes were synthesized by a simple wet chemical route in the absence of surfactants. Purity, shape and morphology of Cu2O are characterized by XRD, SEM, XPS and DRS-UV. The Cu2O nanocubes-modified glassy carbon electrode (GCE) exhibited high electrocatalytic activity towards glucose oxidation compared with bare GCE electrode. At an applied potential of +0.60 V, the Cu2O electrode presented a high sensitivity of 121.7 μA/mM. A linear response was obtained from 0 to 500 μM, a response time less than 5 s and a detection limit of 38 μM (signal/noise=3). The Cu2O nanocubes modified electrode was stable towards interfering molecules like uric acid (UA), ascorbic acid (AA) and dopamine (DA). In short, a facile chemical preparation process of cuprous oxide nanocubes, and the fabricated modified electrode allow highly sensitive, selective, and fast amperometric sensing of glucose, which is promising for the future development of non-enzymatic glucose sensors.

The direct electrocatalytic oxidation of glucose at GCE modified with Cu2O nanocubes is studied. The fabricated electrode showed a good activity, an excellent linear range (0-500 µM), high sensitivity of 121.7 µA/mM, response time less than 5 s and a detection limit of 38 µM (signal/noise=3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

References

  1. Windmiller J R and Wang J 2013 Electroanalysis 25(1) 29

  2. Kim Y P, Park S J, Lee D and Kim H S 2012 J. Appl. Electrochem. 42 383

    Google Scholar 

  3. Lukachova L V, Karyakin A A, Karyakina E E and Gorton L 1997 Sens. Actuators B 44 356

    Google Scholar 

  4. Wang J 2008 Chem. Rev. 108

  5. Zhang L, Yuan S M, Yang L M, Fang Z and Zhao G C Zhao 2013 Microchim. Acta 180 627

  6. Zhang Z, Gu S, Ding Y and Jin J 2012 Anal. Chim. Acta 745 112

  7. Jusoh N, Aziz A A and Supriyanto E 2012. Int. J. Biol. Biomed. Eng. 6 77

    Google Scholar 

  8. Liu M, Liu R and Chen W 2013 Biosens Bioelectron. 45 206

  9. Lv W, Jin F M, Guo Q, Yang Q H and Kang F 2011 Electrochim. Acta 73 129

  10. Xu F, Cui K, Sun Y, Guo C, Liu Z, Zhang Y, Shi Y and Li Z 2010 Talanta 82(5) 1845

  11. Zhu Z G, Gancedo L G, Chen C, Zhu X R, Xie H Q, Flewitt A J and Milne W I 2013 Sens. Actuators B 178 586

  12. Niu X, Lan M, Chen C and Zhao H 2012 Talanta 99 1062

  13. Hu X W, Mao C J, Song J M, Niu H L, Zhang S Y and Huang H P 2013 Biosens. Bioelectron. 41 372

  14. He B, Gao N, Wei F and Lu Q 2012 Adv. Mater. Res. 538 2434

  15. Cubuk S, Yetimoglu E K, Kahraman M V, Demirbilek P and Firlak M 2013 Sens. Actuators B 181 187

    Google Scholar 

  16. Luo S, Su F, Liu C, Li J, Liu R, Xiao Y, Li Y, Liu X and Cai Q 2011 Talanta 86 157

  17. Chu X, Zhu X, Dong Y, Chen T, Ye M and Sun W 2012 J. Electroanal. Chem. 676 20

  18. Hu F, Chen S, Wang C, Yuan R, Chai Y, Xiang Y and C Wang C 2011 J. Mol. Catal. B: Enzym. 72 298

  19. Cherevko S and Chung C H 2009 Sens. Actuators B 142 (2009), 216

    Google Scholar 

  20. Zhang Y, Wang Y, Jia J and Wang J 2012 Sens. Actuators B 171 580

    Google Scholar 

  21. Niu X, Chen C, Zhao H, Chai Y and Lan M 2012 Biosens. Bioelectron. 36 262

  22. Cao F and Gong J 2012 Anal. Chim. Acta 723 39

    Google Scholar 

  23. Lu L M, Zhang X B, Shen G L and Yu R Q 2012 Anal. Chim. Acta 715 99

  24. Luo J, Jiang S, Zhang H, Jiang J and Liu X 2012 Microchim. Acta 177 (2012), 485

  25. Zhou X, Nie H, Yao Z, Dong Y, Yang Z and Huang S 2012 Sens. Actuators B 168 1

  26. Wang Z, Wang H, Wang L and Pan L 2009 J. Phys. Chem. Solids 70 719

    Google Scholar 

  27. Schmidt T J and Gasteiger H A 2003 Handbook of fuel cells-fundamentals, technology and applications (eds) W Vielstich, H A Gasteiger and A Lamm (USA: John Wiley & Sons) 2 p. 316

  28. Sharma P and Bhatti H S 2009 Mater. Chem. Phys. 114 889

    Google Scholar 

  29. Huang X W, Liu Z J and Zheng Y F 2011 Chinese Chem. Lett. 22 879

  30. Ahmed A, Gajbhiye N S and Joshi A G 2011 J. Solid. State. Chem. 184 2209

    Google Scholar 

  31. Lin H H, Wang C Y, Shih H C, Chen J M and Hsieh C T 2004 J. App. Phys. 95 5889

  32. Fan H, Yang L, Hua W, Wu X, Wu Z, Xie S and Zou B 2004 Nanotechnology 15 37

  33. Yang Z H, Zhang D P, Zhang W X and Zhang M 2009 J. Phys. Chem. Solids 70 840

  34. Sekhar H and Rao D N 2012 J. Nanopart. Res. 14 (41) 976.

  35. Qu Y, Li X, Chen G, Zhang H and Chen Y 2008 Chen, Mater. Lett. 62 886

  36. Wagner C D, Riggs W M, Davis L E, Moulder J E and Muilenber G E 1979 Handbook of photoelectron spectroscopy (USA: Perkin Elmer Corporation Physical Electronics Division)

  37. Liu J, Wang S, Wang Q and Geng B 2009 Sens. Actuators B 143 253

    Google Scholar 

  38. Zhang L, Li H, Ni Y, Li J, Liao K and Zhao G 2009 Electrochem. Commun. 11 812

  39. Qian Y, Ye F, Xu J and Le Z G 2012 Int. J. Electrochem. Sci. 7 10063

  40. Wang J and Zhang W D 2011 Electrochim. Acta 56 7510

  41. Zhang X, Gu A, Wang G, Wei Y, Wang W, Wu H and Fang B 2010 Cryst. Eng. Commun. 12 1120

  42. Wang X, Hu C G, Liu H, Du G J, He X S and Xi Y 2010 Sens. Actuator B: Chem. 144 220

  43. Cui H F, Ye J S, Zhang W D, Li C M, Luong J H T and Sheu F S 2007 Anal. Chim. Acta 594 175

  44. Male K B, Hrapovic S, Liu Y, Wang D and Luong J H T 2004 Anal. Chim. Acta 516 35

  45. Park S, Chung T D and Kim H C 2003 Anal. Chem. 75 3046

  46. Zhang L, Ni Y and Li H 2010 Microchim. Acta 171 103

  47. Wang L, Fu J, Hou H and Song Y 2012 Int. J. Electrochem. Sci. 7 (2012), 12587

  48. Li S, Zheng Y, Qin G W, Ren Y, PeiWand Zuo L 2011 Talanta 85 1260

    Google Scholar 

  49. Toghill K E, Xiao L, Phillips M A and Compton R G 2010 Sens. Actuators B 147(2) 642

    Google Scholar 

  50. Li C, Su Y, Zhang S, Ly X, Xi H and Wang Y 2011 Biosens. Bioelectron. 26(2) 903

  51. Huang T K, Lin K W, Tung S P, Cheng T M, Chang I C, Hsieh Y Z, Lee C Y and Chiu H T 2009 J. Electroanal. Chem. 636 123

    Google Scholar 

  52. Nayak P, Anbarasan B, and Ramaprabhu S 2013 J. Phys. Chem. C 117(25) 13202

Download references

Acknowledgements

This work was carried out with the help of VIT management through research scholarship. This work was also conducted under the framework of Research and Development Program of the Korea Institute of Energy Research (KIER) (B3-2467-07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to BALA P C RAGHUPATHY, SOON KWAN JEONG or ANDREWS NIRMALA GRACE.

Additional information

Supplementary information

Supplementary information includes Diffusive reflectance UV, XPS, Real sample analysis of modified electrode in 0.1 M NaOH solution (figures S1S4) and table S1. For details, see www.ias.ac.in/chemsci. website.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 786 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

FELIX, S., KOLLU, P., RAGHUPATHY, B.P.C. et al. Electrocatalytic activity of Cu2O nanocubes based electrode for glucose oxidation. J Chem Sci 126, 25–32 (2014). https://doi.org/10.1007/s12039-013-0564-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0564-x

Keywords.

Navigation