Skip to main content
Log in

Mixed-ligand binuclear copper(II) complex of 5-methylsalicylaldehyde and 2,2-bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A new mixed-ligand binuclear copper(II) complex [Cu(MS)(bpy)]2.(ClO4)2, built of 5-methylsalicylaldehyde and 2,2-bipyridyl has been synthesized and characterized by using elemental analysis, IR and UV-Vis spectroscopy. Crystal structure of the complex shows that copper(II) ion lies in a square pyramidal coordination environment. The structure consists of two symmetrical half units in which the copper(II) ion of one half unit connected with the phenolate oxygen atom of other half unit along with one perchlorate anion in the crystal lattice as free molecule. Presence of uncoordinated perchlorate anion was also confirmed by IR spectroscopy. Absorption spectroscopy exhibits d-d transition at 628 nm, which further supports the square pyramidal geometry around the copper(II) ions. EPR spectrum of the copper(II) complex at room temperature shows a broad signal without any splitting pattern at g || = 2.26,g = 2.03 and the magnetic moment (μ eff= 1.31 BM) obtained at room temperature indicate an antiferromagnetic interaction between the two copper(II) ions through phenoxide-bridge. Binding studies reveal that the complex possesses good binding propensity (K b = 5.2 ± 1.7 × 104 M−1) and bind to nitrogenous bases of DNA through intercalation. Nuclease activity of the complex with pBR322 DNA shows that the effect of hydrolytic cleavage is dose-dependent and the oxidative cleavage indicates the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species.

Mixed-ligand binuclear copper(II) complex was isolated and characterized. The binding studies of the complex suggest the intercalation mode of binding with CTDNA. The nuclease activity with pBR322 DNA shows that the hydrolytic cleavage is dose-dependent and the oxidative mechanism implies the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Barve A, Kumbhar A, Bhat M, Joshi B, Butcher R, Sonawane U and Joshi R 2009 Inorg. Chem. 48 9120

    Article  CAS  Google Scholar 

  2. Hui J K H, Yu Z and MacLachlan M J 2007 Angew. Chem. Int. Ed. 119 8126

    Article  Google Scholar 

  3. Loganathan R, Ramakrishnan S, Suresh E, Riyasdeen A, Akbarsha M A and Palaniandavar M 2012 Inorg. Chem. 51 5512

    Article  CAS  Google Scholar 

  4. Ramakrishnan S and Palaniandavar M 2005 J. Chem. Sci. 117 179

    CAS  Google Scholar 

  5. Roy M, Pathak B, Patra A K, Jemmis E D, Nethaji M and Chakravarty A R 2007 Inorg. Chem. 46 11122

    Article  CAS  Google Scholar 

  6. Kumar A, Mitra A, Ajay A K, Bhat M K and Rao C P 2012 J. Chem. Sci. 124 1217

    Article  CAS  Google Scholar 

  7. Ng C H, Kong K C, Von S T, Balraj P, Jensen P, Thirthagiri E, Hamada H and Chikira M 2008 Dalton Trans. 447

  8. Ramakrishnan S, Rajendiran V, Palaniandavar M, Periasamy V S, Srinag B S, Krishnamurthy H and Akbarsha M A 2009 Inorg. Chem. 48 1309

    Article  CAS  Google Scholar 

  9. Sammes P G and Yahioglu G 1994 Chem. Soc. Rev. 23 327

    Article  CAS  Google Scholar 

  10. Chen G J, Qiao X, Qiao P Q, Xu G J, Xu J Y, Tian J L, Gu W, Liu X and Yan S P 2011 J. Inorg. Biochem. 105 119

    Article  CAS  Google Scholar 

  11. Bruker-Nonius 2004APEX-II and SAINT-plus (Version 7.06a), Bruker AXS Inc., Madison, Wisconsin, USA

  12. Altomare A, Cascarano G, Giacovazzo C and Guagliardi A 1993 J. Appl. Crystallogr. 26 343

    Article  Google Scholar 

  13. Sheldrick G M 2008 Acta Crystallogr. A 64 112

    Article  CAS  Google Scholar 

  14. Farrugia L J 1997 J. Appl. Crystallogr. 30 565

    Article  CAS  Google Scholar 

  15. Macrae C F, Edgington P R, McCabe P, Pidcock E, Shields G P, Taylor R, Towler M and van de Streek J 2006 J. Appl. Crystallogr. 39 453

    Article  CAS  Google Scholar 

  16. Marmur J 1961 J. Mol. Biol. 3 208

    Article  CAS  Google Scholar 

  17. Reichmann M E, Rice S A, Thomas C A and Doty P 1954 J. Am. Chem. Soc. 76 3047

    Article  CAS  Google Scholar 

  18. Carter M T, Rodriguez M and Bard A J 1989 J. Am. Chem. Soc. 111 8901

    Article  CAS  Google Scholar 

  19. Smith S R, Neyhart G A, Kalsbeck W A and Thorp H H 1994 New J. Chem. 18 397

    CAS  Google Scholar 

  20. Friedman A E, Chambron J C, Sauvage J P, Turro N J and Barton J K 1990 J. Am. Chem. Soc. 112 4960

    Article  CAS  Google Scholar 

  21. Cohen G and Eisenberg H 1969 Biopolymers 8 45

    Article  CAS  Google Scholar 

  22. Satyanarayana S, Dabrowiak J C and Chaires J B 1992 Biochemistry 31 9319

    Article  CAS  Google Scholar 

  23. Addison A W, Rao T N, Reedijk J, van Rijn J and Verschoor G C 1984 J. Chem. Soc. Dalton Trans. 1349

  24. Dhara P K, Pramanik S, Lu T H, Drew M G B and Chattopadhyay P 2004 Polyhedron 23 2457

    Article  CAS  Google Scholar 

  25. Weyhermüller T, Wagner R and Chaudhuri P 2011 Eur. J. Inorg. Chem. 2011 2547

    Article  Google Scholar 

  26. Fei B L, Li W, Xu W S, Li Y G, Long J Y, Liu Q B, Shao K Z, Su Z M and Sun W Y 2013 J. Photochem. Photobiol. B 125 32

    Article  CAS  Google Scholar 

  27. Desiraju G R and Steiner T 1999 The weak hydrogen bond in structural chemistry and biology. Oxford University PressNew York

    Google Scholar 

  28. Bharathi K S, Sreedaran S, Rahiman A K and Narayanan V 2013 Spectrochim. Acta A 105 245

    Article  Google Scholar 

  29. Geary W J 1971 Coord. Chem. Rev. 7 81

    Article  CAS  Google Scholar 

  30. Barefield E K, Freeman G M and Derveer D G V 1986 Inorg. Chem. 25 552

    Article  CAS  Google Scholar 

  31. Connick P A and Macor K A 1991 Inorg. Chem. 30 4654

    Article  CAS  Google Scholar 

  32. Benzekri A, Dubourdeaux P, Latour J M, Rey P and Laugier J 1991J. Chem. Soc. Dalton. Trans. 3359

  33. Tolman W B, Rardin R L and Lippard S J 1989 J. Am. Chem. Soc. 111 4532

    Article  CAS  Google Scholar 

  34. Guzar S H and Qin-han J I N 2008 J. Appl. Sci. 8 2480

    Article  CAS  Google Scholar 

  35. Dougherty G and Pigram W J 1982 Crit. Rev. Biochem. 12 103

    Article  CAS  Google Scholar 

  36. Bejune S A, Shelton A H and McMillin D R 2003 Inorg. Chem. 42 8465

    Article  CAS  Google Scholar 

  37. Raja D S, Bhuvanesh N S P and Natarajan K 2011 Eur. J. Med. Chem. 46 4584

    Article  CAS  Google Scholar 

  38. Cory M, Mckee D D, Kagan J, Henry D W and Miller J A 1985 J. Am. Chem. Soc. 107 2528

    Article  CAS  Google Scholar 

  39. Fin L and Yang P 1997 J. Inorg. Biochem. 68 79

    Article  Google Scholar 

  40. Gabbay E J, Scofield R E and Baxter C S 1973 J. Am. Chem. Soc. 95 7850

    Article  CAS  Google Scholar 

  41. Ramakrishnan S, Shakthipriya D, Suresh E, Periasamy V S, Akbarsha M A and Palaniandavar M 2011 Inorg. Chem. 50 6458

    Article  CAS  Google Scholar 

  42. Anbu S, Kandaswamy M, Kamalraj S, Muthumarry J and Varghese B 2011 Dalton Trans. 40 7310

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Sophisticated Analytical Instruments Facility (SAIF), Indian Institute Technology Madras (IIT-M), Chennai 600 025, for solving the crystal structure of the complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AZIZ KALILUR RAHIMAN.

Additional information

Supplementary information

CCDC-924217 contains supplementary crystallographic data of this article. These data files can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif). Figures , and show the packing diagram, cyclic voltammogram and T4 ligation experiment of the complex, respectively. For details, see www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 182 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GURUMOORTHY, P., RAVICHANDRAN, J. & RAHIMAN, A.K. Mixed-ligand binuclear copper(II) complex of 5-methylsalicylaldehyde and 2,2-bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity. J Chem Sci 126, 783–792 (2014). https://doi.org/10.1007/s12039-014-0607-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0607-y

Keywords

Navigation