Skip to main content
Log in

Interaction of cyclodextrins with human and bovine serum albumins: A combined spectroscopic and computational investigation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Interaction of cyclodextrins (CDs) with the two most abundant proteins, namely human serum albumin (HSA) and bovine serum albumin (BSA), has been investigated using steady-state and time-resolved fluorometric techniques, circular dichroism measurements and molecular docking simulation. The study reveals that the three CDs interact differently on the fluorescence and fluorescence lifetimes of the serum albumins. However, fluorescence anisotropy and circular dichroism are not affected. Depending on their size, different CDs bind to the serum albumins in different positions, resulting in changes in the spectral behaviour of the proteins. Docking study suggests the probable binding sites of the three CDs with the proteins. Combined experimental and computational studies imply that sufficiently high concentration of CDs causes loosening of the rigid structures of these transport proteins, although their secondary structures remain intact. Thus, CDs are found to be safe for the serum proteins from the structural point of view.

Depending on their cavity sizes, cyclodextrins bind to the human and bovine serum albumins in different positions. This leads to loosening of the rigid structures of the serum proteins resulting in a change in the polarity around the microenvironment of the intrinsic fluorophore of these proteins, i.e., the tryptophan moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Min H X and Carter D C 1992 Nature 358 209

  2. Peters T 1985 Serum albumin, advances in protein chemistry (New York: Academic Press)

  3. Helms M K, Peterson C E, Bhagavan N V and Jameson D M 1997 FEBS Lett. 408 67

  4. El-Kemary M, Gil M and Douhal A 2007 J. Med. Chem. 50 2896

  5. Hu Y J, Liu Y and Xiao X-H 2009 Biomacromolecules 10 517

  6. Barreleiro P C A and Lindman B 2003 J. Phys. Chem. B 107 6208

  7. DemchenSko A P 1992 In Topics in fluorescence spectroscopy: Biochemical applications J R Lakowicz (ed.) (New York: Plenum)

  8. Cardenas M, Schillen K, Pebalk D, Nylander T and Lindman B 2005 Biomacromolecules 6 832

  9. Haldar B, Chakrabarty A, Mallick A, Mandal M C, Das P and Chattopadhyay N 2006 Langmuir 22 3514

  10. Mallick A, Bera S C, Maiti S, Haldar B and Chattopadhyay N 2004 Biophys. Chem. 112 9

  11. Connors K A 1997 Chem. Rev. 97 1325

  12. Szejtli J 1998 Chem. Rev. 98 1743

  13. Liu L and Guo Q-X 2002 J. Inclusion Phenom. Macrocycl. Chem. 42 1

  14. Rekharsky M V and Inoue Y 1998 Chem. Rev. 98 1875

  15. Lakowicz J R 2006 Principles of fluorescence spectroscopy (ed.) (New York: Springer)

  16. Matsumoto N, Yamada M, Kurakata Y, Yoshida H, Kamitori S, Nishikawa A and Tonozuka T 2009 Febs. J. 276 3008

  17. Vester-Christensen M B, AbouHachem M, Syensson B and Henriksen A 2010 J. Mol. Biol. 403 739

  18. Tonozuka T, Sogawa A, Yamada M, Matsumoto N, Yoshida H, Kamitori S, Ichikawa K, Mizuno M, Nishikawa A and Sakano Y 2007 Febs J. 274 2109

  19. Sugio S, Kashima A, Mochizuki S, Noda M and Kobayashi K 1999 Proetin Engg. 12 439

  20. Morris G M, Goodsell D S, Halliday R S, Huey R, Hart W E, Belew R K and Olson A J 1998 J. Comput. Chem. 19 1639

  21. De Lano W L 2002 The PyMOL molecular graphics system (San Carlos, CA, USA: De Lano Scientific)

  22. Keshavarz M 2009 J. Phys. Theor. Chem. 6 113

  23. Togashi D M, Ryder A G, Mc Mahon D, Dunne P and McManus J 2007 Proc. SPIE-OSA Biomed. Opt. 6628 1

  24. Liu R, Sun F, Zhang L, Zong W, Zhao X, Wang L, Wu R and Hao X 2009 Sci. Total Environ. 407 4184

  25. Zhao X, Liu R, Chi Z, Teng Y and Qin P 2010 J. Phys. Chem. B 114 5625

  26. Benesi H A and Hildebrand J H 1949 J. Am. Chem. Soc. 71 2703

  27. Messner M, Kurkov S V, Jansook P and Loftsson T 2010 Intl. J. Pharmaceutics 387 199

  28. Anand U, Jash C and Mukherjee S 2010 J. Phys. Chem. B 114 15839

  29. Maity A, Mukherjee P, Das T, Ghosh P and Purkayastha P 2012 Spectrochimica Acta Part A 92 382

  30. Muiño P L and Callis P R 2009 J. Phys. Chem. B 113 2572

  31. Das P, Mallick A, Haldar B, Chakrabarty A and Chattopadhyay N 2006 J. Chem. Phys. 125 044516 1

  32. Patel S and Datta A 2007 J. Phys. Chem. B 111 10557

  33. Vekshin N, Vincent M and Gallay J 1992 Chem. Phys. Lett. 199 459

  34. Gelamo E L, Silva C H T P, Imasato H and Tabak M 2002 Biochim. Biophys. Acta 1594 84

  35. Bose D, Ghosh D, Das P, Girigoswami A, Sarkar D and Chattopadhyay N 2010 Chem. Phys. Lipids 163 94

  36. Jana B, Ghosh S and Chattopadhyay N 2013 J. Photochem. Photobiol. B: Biol. 126 1

  37. Möller M and Denicola A 2002 Biochem. Mol. Biol. Educ. 30 175

  38. Lehrer S S and Leavis P C 1978 Methods Enzymol 49 222

  39. Noel J K and Hunter M J 1972 J. Biol. Chem. 247 7391

  40. Lehrer S S 1978 Biochemistry 10 3254

  41. Chakrabarty A, Mallick A, Haldar B, Das P and Chattopadhyay N 2007 Biomacromolecules 8 920

  42. Moriyama Y and Takeda K 1999 Langmuir 15 2003

  43. Moriyama Y and Takeda K 2005 Langmuir 21 5524

  44. Parker W and Song P S 1992 Biophys. J. 61 1435

  45. Brown J R 1977 In Albumin structure, function, and uses V M Rosenoer, M Oratz, M A Rothschild (ed.) (Oxford: Pergamon Press)

  46. Hetenyi C and Van Der Spoel D 2006 FEBS Lett. 580 1447

  47. Paul B K, Ray D and Guchhait N 2012 Phys. Chem. Chem. Phys. 14 8892

  48. Campbell S J, Gold N D, Jackson R M and Westhead D R 2003 Curr. Opin. Struct. Biol. 13 389

  49. Aachmann F L, Otzen D E, Larsen K L and Wimmer R 2003 Protein Eng. 16 905

Download references

Acknowledgements

Financial supports from the Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India, are gratefully acknowledged. S G thanks University Grants Commission (UGC) for his fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NITIN CHATTOPADHYAY.

Additional information

Supplementary Information

Benesi–Hildebrand plots for both HSA and BSA, plot of normalized fluorescence of the proteins against the concentration of the different CDs, the analyzed fluorescence lifetime data of both the albumins in the presence of varying concentrations of the three CDs and variation of normalized lifetime values of BSA in the presence of varying concentrations three CDs are presented in the Supplementary information (see www.ias.ac.in/chemsci).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 552 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GHOSH, S., PAUL, B.K. & CHATTOPADHYAY, N. Interaction of cyclodextrins with human and bovine serum albumins: A combined spectroscopic and computational investigation. J Chem Sci 126, 931–944 (2014). https://doi.org/10.1007/s12039-014-0652-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0652-6

Keywords

Navigation