Skip to main content
Log in

Understanding the structure and electronic properties of N-doped graphene nanoribbons upon hydrogen saturation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Structures and electronic properties of zigzag graphene nanoribbon (ZGNR) with pyridine (3NV-ZGNR) functionalized by Scandium (Sc) at the edge were studied through quantum chemical calculations in the formalism of density-functional theory (DFT). Pyridine-like nitrogen defects is very crucial for enhancing the Sc atom binding to the defects and is thermodynamically favoured. During Sc decoration of ZGNR there is a shift from 0.35 eV small gap semiconductor regime to that of a metal which can be used for band gap tuning by controlled saturation of Sc. ZGNR decorated with Sc can attract H2. Upon saturation of multiple H2 in quasi-molecular fashion, the metallic character is converted to semiconductors of small gap of 0.10 eV, which are predicted to be interesting materials not only for hydrogen storage but also for their band gap engineered properties.

Scandium decoration of zigzag graphene nanoribbon with pyridine can attract H2 and upon saturation of multiple H2 in quasi-molecular fashion the metallic character is converted to small gap semiconductor of 0.10 eV, predicted to be interesting materials not only for hydrogen storage but also for their band engineering properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson I V, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197

  2. Katsnelson M L, Novoselov K S and Geim A K 2006 Nature Phys. 2 620

  3. Castro Neto A H, Guinea F and Peres N M R 2006 Phys. World 19 33

  4. Zhou S Y, Gwenon G H, Graf J, Ferdorov A V, Spataru C D, Diehl R D, Kopelevich Y, Lee D H, Louie S G and Lanzara A 2006 Nature Phys. 2 595

  5. Geim A K and Novoselov K S 2007 Nature Mat. 6(3) 183

  6. Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379

  7. Zheng Y and Ando T 2002 Phys. Rev. B 65 ID 245420

  8. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V and Firsov A A 2004 Science 306 (5696) 666

  9. Fujita M, Wakabayashi K, Nakada K and Kusakabe K J J 1996 Phys. Soc. Jap. 65 1920

  10. Miyamoto Y, Nakada K and Fujita M 1999 Phys. Rev. B 60 16211

  11. Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954

  12. Maruyama K K 2003 Mat. Phys. Rev. B 67 092406

  13. Lee H, Son Y W, Park N Han and Yu S 2005 J. Phys. Rev. B 72 174431

  14. Rudberg E, Salek P and Luo Y 2007 Nano Lett. 7 2211

  15. Pisani L, Chan J A and Harrison B M 2007 Nano Mat. Phys. Rev. B 75 064418

  16. Hod O, Barone V and Scuseria G E 2008 Phys. Rev. B 77 035411

  17. Hod O, Peralta J E and Scuseria G E 2007 Phys. Rev. B 76 233401

  18. Hod O, Barone V, Peralta J E and Scuseria G E 2007 Nano Lett. 7 2295

  19. Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748

  20. Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803

  21. Groot R A, Mueller F M, Engen P G and Buschow K H J Phys. Rev. Lett. 1983 50 2024

  22. Prinz G A 1998 Science 282 1660

  23. Ziese M 2002 Rep. Prog. Phys. 65 143

  24. Son Y W, Cohen M L and Louie S G 2006 Nature 444 347

  25. Kan E J, Li Z, Yang J L and Hou J G 2007 App. Phys. Lett. 91 243116

  26. Zhao J, Ding Y, Wang X G, Cai Q and Wang X Z 2011 Diamond Relat. Mater. 20 36

  27. Delley B 1990 J. Chem. Phys. 92 508

  28. Delley B 2003 J. Chem. Phys. 113 7756

  29. Dmol 3 is a density functional theory quantum mechanical package available from Accelrys Software Inc.

  30. Perdew J P and Ernzerhof K B 1996 Mat. Phys. Rev. Lett. 77 3865

  31. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

  32. Jose D and Datta A 2012 J. Phys. Chem. C 116 24639

  33. Jose D and Datta A 2011 Phys. Chem. Chem. Phys. 13 7304

  34. Jose D, Nijamudheen A and Datta A 2013 Phys. Chem. Chem. Phys. 15 8700

  35. Mananghaya M 2014 Bull. Korean Chem. Soc. 35 (1) 253

  36. Adamson A W and Gast A P 1997 In Physical Chemistry of Surfaces (Michigan: Wiley)

  37. Mananghaya M, Rodulfo E, Santos G N, Villagracia A R and Ladines A N 2012 J. Nanomater. 2012 104891

  38. Mananghaya M, Rodulfo E, Santos G N and Villagracia A R 2012 J. Nanotechnol. 2012 780815

  39. Mananghaya M 2012 J. Korean Chem. Soc. 56(1) 34

  40. Dong L, Craig M M, Khang D and Chen C J 2012 J. Nanotechnol. 2012 780815

  41. Datta A 2011 Phys. Chem. Chem. Phys. 13 7304

Download references

Acknowledgement

This work was supported in part by the Department of Science and Technology, Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD) formerly Philippine Council for Advanced Science and Technology Research and Development (DOST, PCASTRD) and De La Salle University Manila for the acquisition of the Dmol 3 v6.0 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MICHAEL MANANGHAYA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MANANGHAYA, M. Understanding the structure and electronic properties of N-doped graphene nanoribbons upon hydrogen saturation. J Chem Sci 126, 1737–1742 (2014). https://doi.org/10.1007/s12039-014-0744-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0744-3

Keywords

Navigation