Skip to main content

Advertisement

Log in

Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Abstract

Randles-Ershler admittance model is extensively used in the modeling of batteries, fuel cells, sensors etc. It is also used in understanding response of the fundamental systems with coupled processes like charge transfer, diffusion, electric double layer charging and uncompensated solution resistance. We generalize phenomenological theory for the Randles-Ershler admittance at the electrode with double layer capacitance and charge transfer heterogeneity, viz., non-uniform double layer capacitance and charge transfer resistance (\(c_d\) and \(R_{CT}\)). Electrode heterogeneity is modeled through distribution functions of \(R_{CT}\) and \(c_d\), viz., log-normal distribution function. High frequency region captures influence of electric double layer while intermediate frequency region captures influence from the charge transfer resistance of heterogeneous electrode. A heterogeneous electrode with mean charge transfer resistance \(\overline{R_{CT}}\) shows faster charge transfer kinetics over a electrode with uniform charge transfer resistance (\(\overline{R_{CT}}\)). It is also observed that a heterogeneous electrode having high mean with large variance in the \(R_{CT}\) and \(c_d\) can behave same as an electrode having low mean with small variance in the \(R_{CT}\) and \(c_d\). The origin of coupling of uncompensated solution resistance (between working and reference electrode) with the charge transfer kinetics is explained. Finally, our model provides a simple route to understand the effect of spatial heterogeneity.

Graphical Abstract

SYNOPSIS An electrochemical system consisting of heterogeneous working electrode (non-uniform charge transfer (CT) resistance (\(R_{CT}^{(i)}\)) and electric double layer capacitance (\(c_{d}^{(i)}\))) and ohmic losses (\(R_\Omega \)) between working and reference electrode. The analysis suggests that electrode with heterogeneity results in faster CT kinetics as compared to CT kinetics over homogeneous electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Randles J E B 1947 Kinetics of Rapid Electrode Reactions Disc. Far. Soc. 1 11

    Article  Google Scholar 

  2. Ershler B 1947 Investigation of Electrode Reactions by the Method of Charging-Curves and with the aid of Alternating Currents Disc. Far. Soc. 1 269

    Article  Google Scholar 

  3. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M and Uchida I 2001 Kinetic Characterization of Single Particles of LiCoO\(_2\) by AC Impedance and Potential Step Methods J. Electrochem. Soc. 148 A422

    Article  CAS  Google Scholar 

  4. Takahashi M, Tobishima S, Takei K and Sakurai Y 2002 Reaction Behavior of LiFePO\(_4\) as a Cathode Material for Rechargeable Lithium Batteries Solid State Ionics. 148 283

    Article  CAS  Google Scholar 

  5. Lisdat F and Schäfer D 2008 The Use of Electrochemical Impedance Spectroscopy for Biosensing Anal. Bioanal. Chem. 391 1555

    Article  CAS  Google Scholar 

  6. Katz E and Willner I 2003 Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors Electroanalysis. 15 913

    CAS  Google Scholar 

  7. Nikonenko V and Kozmai A 2012 Electrical Equivalent Circuit of an Ion-Exchange Membrane System Electrochim. Acta 56 1262

    Article  Google Scholar 

  8. Moya A A 2014 Electrochemical Impedance of Ion-Exchange Membranes in Ternary Solutions with Two Counterions J. Phys. Chem. C. 118 2539

    Article  CAS  Google Scholar 

  9. Harris J J and Bruening M L 2000 Electrochemical and in Situ Ellipsometric Investigation of the Permeability and Stability of Layered Polyelectrolyte Films Langmuir. 16 2006

    Article  CAS  Google Scholar 

  10. Mandelbrot B B 1977 In The Fractal Geometry of Nature (San Francisco: Freeman)

    Google Scholar 

  11. Feder J 1988 In Fractals (New York: Plenum)

    Book  Google Scholar 

  12. Kant R 1993 Can Current Transients be Affected by the Morphology of the Non fractal Electrode? Phys. Rev. Lett. 70 4094

    Article  CAS  Google Scholar 

  13. Kant R 1994 Can One Electrochemically Measure the Statistical Morphology of a Rough Electrode? J. Phys. Chem. 98 1663

    Article  CAS  Google Scholar 

  14. Kant R and Rangarajan S K 1994 Effect of Surface Roughness on Diffusion-Limited Charge Transfer J. Electroanal. Chem. 368 1

    Article  CAS  Google Scholar 

  15. Srivastav S, Dhillon S, Kumar R and Kant R 2013 Experimental Validation of Roughness Power Spectrum Based Theory of Anomalous Cottrell Response J. Phys. Chem. C 117 8594

    Article  CAS  Google Scholar 

  16. Dhillon S and Kant R 2013 SEM-CV Hybrid Method for 3D-Roughness Characterization, Reconstruction and its Electroactivity Appl. Surf. Sci. 282 105

    Article  CAS  Google Scholar 

  17. Liu R, Duay J and Lee S B 2011 Heterogeneous Nanostructured Electrode Materials for Electrochemical Energy Storage Chem. Commun. 47 1384

    Article  CAS  Google Scholar 

  18. Eftekhari A, Kazemzad M and Keyanpour-Rad M 2005 Influence of Atomic-Scale Irregularities in Fractal Analysis of Electrode Surfaces Appl. Surf. Sci. 239 311

    Article  CAS  Google Scholar 

  19. Davies T J, Moore R M, Banks C E and Compton R G 2004 The Cyclic Voltammetric Response of Electrochemically Heterogeneous Surfaces J. Electroanal. Chem. 574 123

    Article  CAS  Google Scholar 

  20. Davies T J, Hyde M E and Comptom R G 2005 Nanotrench Arrays Reveal Insight into Graphite Electrochemistry Angew. Chem. Int. Ed. 44 5121

    Article  CAS  Google Scholar 

  21. Janek R P and Fawcett W R 1998 Impedance Spectroscopy of Self-Assembled Monolayers on Au(111): Sodium Ferrocyanide Charge Transfer at Modified Electrodes Langmuir 14 3011

    Article  CAS  Google Scholar 

  22. Los P, Lasia A, Fournier J, Brossard L and Ménard H 1994 AC Impedance Studies of Highly Oriented Pyrolytic Graphite in 1M NaOH Solution J. Electrochem. Soc. 141 2716

    Article  CAS  Google Scholar 

  23. Navarro-Suárez A M, Hidalgo-Acosta J C, Fadini L, Feliu J M and Suárez-Herrera M F 2011 Electrochemical Oxidation of Hydrogen on Basal Plane Platinum Electrodes in Imidazolium Ionic Liquids J. Phys. Chem. C 115 11147

    Article  Google Scholar 

  24. Edwards M A, Bertoncello P and Unwin P R 2009 Slow Diffusion Reveals the Intrinsic Electrochemical Activity of Basal Plane Highly Oriented Pyrolytic Graphite Electrodes J. Phys. Chem. C 113 9218

    Article  CAS  Google Scholar 

  25. Neumann C C M, Batchelor-McAuley C, Downing C and Compton R G 2011 Anthraquinone Monosulfonate Adsorbed on Graphite Shows Two Very Different Rates of Electron Transfer: Surface Heterogeneity Due to Basal and Edge Plane Sites Chem. Eur. J. 17 7320

    Article  CAS  Google Scholar 

  26. Banks C E, Moore R R, Davies T J and Compton R G 2004 Investigation of Modified Basal Plane Pyrolytic Graphite Electrodes: Definitive Evidence for the Electrocatalytic Properties of the ends of Carbon Nanotubes Chem. Commun. 16 1804

    Article  Google Scholar 

  27. Yuan W, Zhou Y, Li Y, Li C, Peng H, Zhang J, Liu Z, Dai L and Sh G 2013 The Edge- and Basal-plane-specific Electrochemistry of a Single-Layer Graphene sheet Sci. Rep. 3 2248

    Google Scholar 

  28. Shen A, Zou Y, Wang Q, Dryfe R A W, Huang X, Dou S, Dai L and Shuangyin W 2014 Oxygen Reduction Reaction in a Droplet on Graphite: Direct Evidence that the Edge Is More Active than the Basal Plane Angew. Chem. Int. Ed. 53 10804

    Article  CAS  Google Scholar 

  29. Randviir E P and Banks C E 2014 The Oxygen Reduction Reaction at Graphene Modified Electrodes Electroanalysis 26 736

    Article  Google Scholar 

  30. Kerner Z and Pajkossy T 1998 Impedance of Rough Capacitive Electrodes: the Role of Surface Disorder J. Electroanal. Chem. 448 139

    Article  CAS  Google Scholar 

  31. Kerner Z and Pajkossy T 2000 On the Origin of Capacitance Dispersion of Rough Electrodes Electrochim. Acta 46 207

    Article  CAS  Google Scholar 

  32. Sabatani E, Cohen-Boulakia J, Bruening M and Rubinstein I 1993 Thioaromatic Monolayers on Gold: A New Family of Self -Assembling Monolayers Langmuir 9 2974

    Article  CAS  Google Scholar 

  33. da Rocha J R C, Demets G J, Bertotti M, Araki K and Toma H E 2002 Charge Transfer at Electrostatically Assembled Tetraruthenated Porphyrin Modified Electrodes J. Electroanal. Chem. 526 69

    Article  Google Scholar 

  34. Alexander C L, Tribollet B and Orazem M E 2015 Contribution of Surface Distributions to Constant-Phase-Element (CPE) Behavior: 1. Influence of Roughness Electrochim. Acta 173 416

    Article  CAS  Google Scholar 

  35. Kant R and Rangarajan S K 2003 Effect of Surface Roughness on Interfacial Reaction-Diffusion Admittance J. Electroanal. Chem. 552 141

    Article  CAS  Google Scholar 

  36. Kant R, Kumar R and Yadav V K 2008 Theory of Anomalous Diffusion Impedance on Realistic Fractal Electrodes J. Phys. Chem. C Lett. 112 4019

    Article  CAS  Google Scholar 

  37. Kumar R and Kant R 2009 Generalized Warburg Impedance on Realistic Self-affine Fractals: Comparative Study of Statistically Corrugated and Isotropic Roughness J. Chem. Sci. 56 579

    Article  Google Scholar 

  38. Kumar R and Kant R 2009 Theory of Generalized Gerischer Admittance of Realistic Fractal Electrode J. Phys. Chem. C 113 19558

    Article  CAS  Google Scholar 

  39. Kumar R and Kant R 2011 Theory of Quasi-Reversible Charge Transfer Admittance on Finite Self-Affine Fractal Electrode Electrochim. Acta 56 7112

    Article  CAS  Google Scholar 

  40. Srivastav S and Kant R 2011 Anomalous Warburg Impedance: Influence of Uncompensated Solution Resistance J. Phys. Chem. C 115 12232

    Article  CAS  Google Scholar 

  41. Kumar R and Kant R 2013 Admittance of Diffusion Limited Adsorption Coupled to Reversible Charge Transfer on Rough and Finite Fractal Electrodes Electrochim. Acta 95 275

    Article  CAS  Google Scholar 

  42. Kant R and Singh M B 2015 Generalization of Randles-Ershler Admittance for Arbitrary Topography Electrode: Application to Random Finite Fractal Roughness Electrochim. Acta 163 310

    Article  CAS  Google Scholar 

  43. Kaur J and Kant R 2015 Curvature-Induced Anomalous Enhancement in the Work Function of Nanostructures J. Phys. Chem. Lett. 6 2870

    Article  CAS  Google Scholar 

  44. Smoluchowski R 1941 Anisotropy of the Electronic Work Function of Metals Phys. Rev. 60 661

    Article  CAS  Google Scholar 

  45. Jia J F, Inoue K, Hasegawa Y, Yang W S and Sakurai T 1998 Variation of the Local Work Function at Steps on Metal Surfaces Studied with STM Phys. Rev. B 58 1193

    Article  CAS  Google Scholar 

  46. Sohn A, Kanki T, Sakai K, Tanaka H and Kim D 2015 Fractal Nature of Metallic and Insulating Domain Configurations in a VO\(_2\) Thin Film Revealed by Kelvin Probe Force Microscopy Sci. Rep. 5 10417

    Article  CAS  Google Scholar 

  47. Newman J 1970 Frequency Dispersion in Capacity Measurements at a Disk Electrode J. Electrochem. Soc. 117 198

    Article  CAS  Google Scholar 

  48. Huang V M, Vivier V, Orazem M E, Pébère N and Tribollet B 2007 The Apparent Constant-Phase-Element Behavior of a Disk Electrode with Faradaic Reactions. A Global and Local Impedance Analysis J. Electrochem. Soc. 154 C99

    Article  CAS  Google Scholar 

  49. Alexander C L, Tribollet B and Orazem M E 2016 Influence of Micrometric-Scale Electrode Heterogeneity on Electrochemical Impedance Spectroscopy Electrochim. Acta 201 374

    Article  CAS  Google Scholar 

  50. Brug G J, van den Eeden A L G, Sluyters-Rehbach M and Sluyters J H 1984 The Analysis of Electrode Impedances Complicated by the Presence of a Constant Phase Element J. Electroanal. Chem. Interfacial Electrochem. 176 275

    Article  CAS  Google Scholar 

  51. Singh M B and Kant R 2013 Debye-Falkenhagen Dynamics of Electric Double Layer in Presence of Electrode Heterogeneities J. Electroanal. Chem. 704 197

    Article  CAS  Google Scholar 

  52. Singh M B and Kant R 2014 Theory of Anomalous Electric Double Layer Dynamics in Ionic Liquids J. Phys. Chem. C 118 8766

    Article  CAS  Google Scholar 

  53. Singh M B and Kant R 2014 Theory of Anomalous Dynamics of Electric Double Layer at Heterogeneous and Rough Electrodes J. Phys. Chem. C 118 5122

    Article  Google Scholar 

  54. Grahame D C 1952 Mathematical Theory of the Faradaic Admittance: Pseudocapacity and Polarization Resistance J. Electro. Chem. Soc. 99 370C

    Article  CAS  Google Scholar 

  55. Srivastav S and Kant R 2010 Theory of Generalized Cottrellian Current at Rough Electrode with Solution Resistance Effects J. Phys. Chem. C 114 10066

    Article  CAS  Google Scholar 

  56. Kant R, Sarathbabu M and Srivastav S 2013 Effect of Uncompensated Solution Resistance on Quasireversible Charge Transfer at Rough and Finite Fractal Electrode Electrochim. Acta 95 237

    Article  CAS  Google Scholar 

  57. Kant R and Rangarajan S K 1995 Diffusion to Rough Interfaces: Finite Charge Transfer Rates J. Electroanal. Chem. 396 285

    Article  Google Scholar 

  58. Harinipriya S and Sangaranarayanan M V 2001 Electron Transfer Reactions at Metal Electrodes: Influence of Work Function on Free Energy of Activation and Exchange Current Density J. Chem. Phys. 115 6173

    Article  CAS  Google Scholar 

  59. Limpert E, Stahel W A and Abbt M 2001 Log-normal Distributions across the Sciences: Keys and Clues BioScience. 51 341

    Article  Google Scholar 

  60. Aitchison J and Brown J A C 1957 In The Log-normal Distribution (Cambridge (UK): Cambridge University Press)

    Google Scholar 

  61. Crow E L and Shimizu K 1988 Log-normal Distributions: Theory and Application (New York: Dekker)

    Google Scholar 

  62. Rodgers R S and Meites L 1968 Corrections for Double-Layer Charging in Chronopotentiometry J. Electroanal. Chem. 16 1

    Article  CAS  Google Scholar 

  63. Isaacs H S and Kendig M W 1980 Determination of surface inhomogeneities using a scanning probe impedance technique Corrosion. 36 269

    Article  CAS  Google Scholar 

  64. Huang V M, Wua S L, Orazema M E, Pébèreb N, Tribollet B and Viviera V 2011 Local electrochemical impedance spectroscopy: A review and some recent developments Electrochim. Acta 56 8048

    CAS  Google Scholar 

  65. Lillard R S, Moran P J and Isaacs H S 1992 A novel method for generating quantitative local electrochemical impedance spectroscopy J. Electrochem. Soc. 139 1007

    Article  CAS  Google Scholar 

  66. Zou F, Thierry D and Isaacs H S 1997 A High-Resolution Probe for Localized Electrochemical Impedance Spectroscopy Measurements J. Electrochem. Soc. 144 957

    Article  Google Scholar 

  67. Magdić K, Kvastek K and Radošević V H 2014 Concept of spatial surface heterogeneity in impedance modelling of electrochemically activated glass-like carbon electrode Electrochim. Acta 117 310

    Article  Google Scholar 

  68. Lucas M and Boily J F 2015 Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study Langmuir 31 13618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.K. thanks University of Delhi for the financial support under “Scheme to Strengthen R&D Doctoral Research Programme”. R.K. and S.D. (for SRF fellowship) are grateful to the DST-SERB (Project No. SB/S1/PC-021/2013)-India for providing the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Kant.

Appendix

Appendix

1.1 A. Derivation of surface boundary constraint

The local current density due to diffusional current at an arbitrary position on the electrode surface \((x, y, z=0)\), is given by

$$\begin{aligned} i_f ( \vec {r}_{||}, t) = n F D_O \partial _{z} \delta C_{O}(\vec {r}_{||}, t) \end{aligned}$$
(A.1)

where \(D_{O}\) is diffusion coefficient of the oxidized species and \(\partial _z = \partial /\partial z\).

Surface boundary condition is derived using the Butler-Volmer equation:

$$\begin{aligned} \frac{i_f(\vec {r}_{||}, t)}{i_0}= & {} \frac{C_O (\vec {r}_{||}, t)}{C_O^0}\mathrm{e}^{\alpha n f \eta (t) } \nonumber \\&- \frac{C_R (\vec {r}_{||}, t)}{C_R^0}\mathrm{e}^{-(1-\alpha ) n f \eta (t)} \end{aligned}$$
(A.2)

where \(i_f(\vec {r}_{||}, t) \) is the faradaic current density. For the moderately supporting systems and correcting for double layer, above equation can be rewritten as

$$\begin{aligned} \frac{i(\vec {r}_{||}, t)}{i_0}= & {} \frac{C_O (\vec {r}_{||}, t)}{C_O^0}\mathrm{e}^{\alpha n f \left( \eta (t) -i(\vec {r}_{||}, t)\,R_\Omega \right) } \nonumber \\&- \frac{C_R (\vec {r}_{||}, t)}{C_R^0}\mathrm{e}^{-(1-\alpha ) n f \left( \eta (t) -i(\vec {r}_{||}, t)\,R_\Omega \right) } \nonumber \\&- \frac{c_d}{i_0}\frac{d\eta }{dt} \end{aligned}$$
(A.3)

where \(i(\vec {r}_{||}, t) = i_f(\vec {r}_{||}, t) - c_d \frac{d\eta (t)}{dt} \) is the combination of both faradaic and non-faradaic component of current density.[62] Replacing \(C_m (\vec {r}_{||}, t)\) by \(\delta C_m (\vec {r}_{||}, t) + C_m^0\), where m = O \(\mathrm{or}\) R

$$\begin{aligned} \frac{i (\vec {r}_{||}, t)}{i_0}= & {} \frac{\delta C_O (\vec {r}_{||}, t)}{C_O^0}\mathrm{e}^{\alpha n f \left( \eta (t) -i(\vec {r}_{||}, t)\,R_\Omega \right) }\nonumber \\&+\mathrm{e}^{\alpha n f \left( \eta (t) -i(\vec {r}_{||}, t)\,R_\Omega \right) } \nonumber \\&- \frac{\delta C_R (\vec {r}_{||}, t)}{C_R^0}\mathrm{e}^{-(1-\alpha ) n f \left( \eta (t) -i(\vec {r}_{||}, t)\,R_\Omega \right) } \nonumber \\&- \mathrm{e}^{-(1-\alpha ) n f \left( \eta (t) -i(\vec {r}_{||}, t)\,R_\Omega \right) } - \frac{c_d}{i_0}\frac{d\eta }{dt} \end{aligned}$$
(A.4)

For the small external perturbation potential and therefore, small output current density, we can linearize the Butler-Volmer equation,

$$\begin{aligned} \frac{i(\vec {r}_{||}, t)}{i_0}= & {} \frac{\delta C_O (\vec {r}_{||}, t)}{C_O^0} \left( 1+\alpha n f \eta (t) - \alpha nf i(\vec {r}_{||}, t)\,R_\Omega \right) \nonumber \\&+ \left( 1+\alpha n f \eta (t) - \alpha nf i(\vec {r}_{||}, t)\,R_\Omega \right) \nonumber \\&- \frac{\delta C_R (\vec {r}_{||}, t)}{C_R^0}\left( 1-nf\eta (t) + \alpha n f \eta (t)\right. \nonumber \\&\left. + nf i(\vec {r}_{||}, t)\,R_\Omega - \alpha nf i(\vec {r}_{||}, t)\,R_\Omega \right) \nonumber \\&- \left( 1-nf\eta (t) + \alpha n f \eta (t) + nf i(\vec {r}_{||}, t)\,R_\Omega \right. \nonumber \\&\left. - \alpha nf i(\vec {r}_{||}, t)\,R_\Omega \right) - \frac{c_d}{i_0}\frac{d\eta }{dt} \end{aligned}$$
(A.5)

Neglecting higher order terms,

$$\begin{aligned} \frac{i (\vec {r}_{||}, t)}{i_0}= & {} \frac{\delta C_O (\vec {r}_{||}, t)}{C_O^0} - \frac{\delta C_R (\vec {r}_{||}, t)}{C_R^0} + nf\eta (t)\nonumber \\&- nf i (\vec {r}_{||}, t)\,R_\Omega - \frac{c_d}{i_0}\frac{d\eta }{dt} \end{aligned}$$
(A.6)

Using the flux-balance condition and assuming that the ions have same diffusion coefficient (\(D_{O} = D_{R} = D\)), we have concentration constrains on the oxidized and reduced species as [57] \(\delta C_{O} (\vec {r}_{||}, t) + \delta C_{R} (\vec {r}_{||}, t) = 0\). It is assumed that the concentration \(\delta C_O(\vec {r}_{||},t)\) has oscillatory time dependence \( \mathrm{e}^{j \omega t} \delta C_O(\vec {r}_{||})\) (behaves like the applied potential). For a small sinusoidal applied interfacial potential \(\eta (t) = \eta _{0}\, \exp (j \omega t)\), using \(i_0 = RT/(nF R_{CT})\) and \( i_f(\vec {r}_{||}, t)\) from equation A.1 in the equation A.6,

$$\begin{aligned}&\frac{n F D_O \partial _{z} \delta C_{O}(\vec {r}_{||})\mathrm{e}^{j \omega t} -j \omega c_d \eta _0 e^{j \omega t}}{RT/(nF R_{CT})}\nonumber \\&\quad = \frac{\delta C_O (\vec {r}_{||})\mathrm{e}^{j \omega t}}{C_O^0} + \frac{\delta C_O (\vec {r}_{||})\mathrm{e}^{j \omega t}}{C_R^0}\nonumber \\&\qquad + nf \Big [ \eta _0 \mathrm{e}^{j \omega t} - R_\Omega (nfD\partial _z \delta C_O (\vec {r}_{||},t)\nonumber \\&\quad - c_d \eta _0 j\omega \mathrm{e}^{j \omega t})\Big ]\nonumber \\&\qquad - nf c_d R_{CT} j \omega \eta _0 \mathrm{e}^{j \omega t} \end{aligned}$$
(A.7)

On rearranging the terms, we get

$$\begin{aligned}&\frac{n^2 F^2}{RT} D (R_{CT}+R_\Omega ) \partial _z \delta C_O(\vec {r}_{||}) \nonumber \\&\quad = \delta C_O (\vec {r}_{||}) \left( \frac{1}{C_O^0} + \frac{1}{C_R^0} \right) \nonumber \\&\qquad +nf\eta _0 \mathrm{e}^{j \omega t} \left( 1+ j \omega c_{d} \left( R_\Omega + R_{CT}\right) \right) \nonumber \\&\qquad - nf c_d R_{CT} j \omega \eta _0 \mathrm{e}^{j \omega t} \end{aligned}$$
(A.8)

\(R_{CT}+R_\Omega \) can be written as \(R_{C\Omega }\) and \(n^2 F^2/RT (1/C_O^0+1/C_R^0)\) as \(\Gamma \), hence the above equation can be rewritten as

$$\begin{aligned} L_{C\Omega }\;\partial _z \delta C_{O} (\vec {r}_{||})-\delta C_{O} (\vec {r}_{||}) \big |_{z=0} = \left( 1 + j\omega \, \tau _{dl} \right) \left( \frac{\Gamma \;\eta _{0}}{n F } \right) \end{aligned}$$
(A.9)

where double layer relaxation time is \(\tau _{dl}=R_{\Omega }c_{d}\). \(L_{C\Omega }\) is phenomenological kinetics-ohmic length is defined as

$$\begin{aligned}&L_{C\Omega } = L_{CT}+L_{\Omega } \nonumber \\&L_{CT} = \Gamma \, D\, R_{CT} \nonumber \\&L_{\Omega } = \Gamma \, D\, R_{\Omega } \end{aligned}$$
(A.10)

1.2 B. Small \({\varvec{R}}_{{\varvec{CT}}}\) and \({\varvec{c}}_{{\varvec{d}}}\) fluctuation approximation

Replacing local \(R_{CT}\) in equation 5 by \(\overline{R_{CT}} + \delta R_{CT}\) and \(c_d\) by \(\overline{c_{d}} + \delta c_{d}\), it becomes

$$\begin{aligned} Y_{R}(\omega )= & {} \left( \frac{A_{0}}{y_W(\omega )^{-1}+ \overline{R_{CT}} + \delta R_{CT} + R_\Omega } \right) \nonumber \\&\Big (1+j \omega R_\Omega (\overline{c_d} + \delta c_d)\Big ) \end{aligned}$$
(B.1)

above equation can be written as,

$$\begin{aligned} Y_{R}(\omega )= & {} \frac{A_{0} }{y_W^{-1}(\omega ) + \overline{R_{C\Omega }} + \delta R_{CT}}\nonumber \\&\Big (1+ \overline{c_d} \,j \omega R_{\Omega } + j \omega \delta c_d R_{\Omega } \Big ) \end{aligned}$$
(B.2)

where \(\overline{R_{C\Omega }} = \overline{R_{CT}} + R_\Omega \). On rearranging the terms, we get

$$\begin{aligned} Y_{R}(\omega )= & {} \frac{A_{0} \Big (1+ j \omega \,c_d \overline{R_{C\Omega }} \Big ) }{\Big (y_W^{-1}(\omega ) + \overline{R_{C\Omega }}\Big )\bigg (1 + \frac{\delta R_{CT}}{y_W^{-1}(\omega ) + \overline{R_{C\Omega }}}\bigg )}\nonumber \\&\bigg (1+\frac{ j \omega \delta c_d R_{\Omega } }{1+ j \omega \, \overline{c_d} R_{\Omega }}\bigg ) \end{aligned}$$
(B.3)

On expanding and ensemble averaging admittance responses over surface heterogeneity, fluctuations in charge transfer resistance and electric double layer capacitance (are dependent on each other) at the electrode surface, the classical Randles-Ershler admittance for small heterogeneity can be written as

$$\begin{aligned} \overline{Y_{R}}(\omega )= & {} \overline{Y_{R}^0}(\omega ) \Bigg [ 1+ \frac{ \overline{\delta R_{CT}^2}}{\big (y_W^{-1}(\omega ) + \overline{R_{C\Omega }}\big )^2} \nonumber \\&- \bigg ( \frac{j \omega R_{\Omega }\overline{\delta R_{CT} \, \delta c_{d}}}{\big (y_W^{-1}(\omega ) + \overline{R_{C\Omega }}\big )\big (1+ j \omega \,\overline{c_d} R_{\Omega }\big )} \bigg ) \Bigg ] \end{aligned}$$
(B.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, S., Kant, R. Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. J Chem Sci 129, 1277–1292 (2017). https://doi.org/10.1007/s12039-017-1335-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1335-x

Keywords

Navigation