Skip to main content

Advertisement

Log in

Cyclodimerization of norbornadiene (NBD) into high energy-density fuel pentacyclotetradecane (PCTD) over mesoporous silica supported Co–Ni nanocatalyst

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The present study focuses on the synthesis of high energy-density fuel pentacyclotetradecane (PCTD) through cyclodimerization followed by hydrogenolysis of norbornadiene (NBD) over mesoporous silica-supported Co–Ni-based nanocatalyst. Catalytic materials are synthesized by incipient wetness impregnation method using Al-MCM-41, MCM-48 and γ-alumina as supporting materials for Co–Ni metals. The textural properties of the catalyst have been investigated through XRD, TEM and N2 physisorption, and the parameters concerning the reactivity of the catalyst optimized. The reaction was performed in a single pot (pressure reactor), and the structure of the product was elucidated by using FTIR and NMR techniques. The optimum reaction parameters (catalyst, temperature, and pressure) were developed to produce a yield of ≥ 85%. The physicochemical properties such as calorific value (10754 cal./g), density (1.08 g/cc), etc. were evaluated, and these can be utilized for ramjet application.

Graphic abstract

Dimerization of NBD into a high energy-density pentacyclotetradecane fuel over mesoporous aluminosilicate supported Co–Ni nanocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Schrauzer G N, Bastian B and Fosselius G 1966 Complex multicenter reactions promoted by binuclear catalyst systems.“Binor-S” a new heptacyclotetradecane via stereospecific dimerization of bicycloheptadiene J. Am. Chem. Soc. 88 4890

    Article  CAS  Google Scholar 

  2. Xiu-Tian-Feng E, Pan L, Wang F, Wang L, Zhang X and Zou J-J 2016 Al-nanoparticle-containing nanofluid fuel: Synthesis, stability, properties, and propulsion performance Ind. Eng. Chem. Res. 55 2738

    Article  CAS  Google Scholar 

  3. Nguyen M D, Nguyen L V, Lee J-S, Han J-S, Jeong B-H, Cheong M-S, et al. 2008 Promoting effect of AlCl_3 on the Fe-catalyzed dimerization of bicyclo [2.2. 1] hepta-2, 5-diene Bull Kor. Chem. Soc. 29 1364

    Article  CAS  Google Scholar 

  4. Xie J, Liu Y, Jia T, Pan L, Fang Y, Shi C, et al. 2020 Regioselective synthesis of methyl-substituted adamantanes for promoting oxidation stability of high-density fuels Energy Fuel. 34 4516

    Article  CAS  Google Scholar 

  5. Rapp D 1990 High energy-density liquid rocket fuel performance, In 26th Joint Propulsion Conference p. 1968

  6. Rajkumar S, Choudhari R S, Chowdhury A and Namboothiri I N 2013 Synthesis and pyrolysis studies of bis (nitratomethyl)-1, 3-bishomocubane—A high-energy high-density liquid Thermochim. Acta 563 38

    Article  CAS  Google Scholar 

  7. Lal S, Rajkumar S, Tare A, Reshmi S, Chowdhury A and Namboothiri I N N 2014 Nitro-substituted bishomocubanes: Synthesis, characterization, and application as energetic materials Chem. Asian J. 9 3533

    Article  CAS  PubMed  Google Scholar 

  8. Lal S, Mallick L, Rajkumar S, Oommen O P, Reshmi S, Kumbhakarna N, et al. 2015 Synthesis and energetic properties of high-nitrogen substituted bishomocubanes J. Mater. Chem. A 3 22118

    Article  CAS  Google Scholar 

  9. Mallic L, Lal S, Reshmi S, Namboothiri I N N, Chowdhury A and Kumbhakarna N 2017 Theoretical studies on the propulsive and explosive performance of strained polycyclic cage compounds New. J. Chem. 41 920

    Article  CAS  Google Scholar 

  10. Shyamala B, Lal S, Chowdhury A, Namboothiri I N N and Kumbhakarna N 2018 Cubane decomposition pathways—A comprehensive study Combust. Flame 197 111

    Article  CAS  Google Scholar 

  11. Sankaranarayanan A, Lal S, Namboothiri I N, Sasidharakurup R, Chowdhury A and Kumbhakarna N 2019 Droplet combustion studies on two novel energetic propellants, an RP-1 surrogate fuel, and their blends Fuel 255 115836

    Article  CAS  Google Scholar 

  12. Suld G, Schneider A and Myers Jr. H K 1977 Catalytic dimerization of norbornadiene to Binor-S. Google Patents. US4031150A.

  13. Dalkılıç E and Daştan A 2015 Synthesis of cyclopentadiene derivatives by retro-Diels–Alder reaction of norbornadiene derivatives Tetrahedron 71 1966

    Article  CAS  Google Scholar 

  14. Suld G, Schneider A and Myers Jr. H K 1980 Dimerization of norbornadiene to exo-exo hexacyclic dimer, Google Patents US-4207080-A

  15. Schrauzer G, Ho R and Schlesinger G 1970 New catalysts of stereospecific norbornadiene dimerization to “binor-s”(1, 2, 4: 5, 6, 8-dimetheno-s-indacene) Tetrahedron Lett. 11 543

    Article  Google Scholar 

  16. Gund T, Thielecke W and Schleyer P 1988 diamantane-pentacyclo [7.3. 1.14, 12.02, 7.06, 11] tetradecane (butanetetraylnaphthalene, 3, 5, 1, 7-[1, 2, 3, 4]-decahydro-) Org. Synth. 50 378

    Google Scholar 

  17. Dzhemilev U M, Khusnutdinov R I and Tolstikov G A 1987 Norbornadienes in the synthesis of polycyclic strained hydrocarbons with participation of metal complex catalysts Russ. Chem. Rev. 56 36

    Article  Google Scholar 

  18. Muthukumaru Pillai S, Tembe G, Koshy V, Ravindranathan M, Venkataramani P, Kalra S, et al. 1996 cyclodimerization of 2, 5-norbornadiene catalyzed by the fe (acac) 3-pph3-et2alcl system New J. Chem. 20 677

    Google Scholar 

  19. Gund T M, Thielecke W and Schleyer P V R 2003 Diamantane: Pentacyclo [7.3. 1.14, 12.02, 7.06, 11] tetradecane Org. Synth. 53 30

    Google Scholar 

  20. Langenbach H J, Keller E and Vahrenkamp H 1977 Katalytische Aktivität durch Öffnung von Metall-Metall-Bindungen Angew. Chem. 89 197

    Article  CAS  Google Scholar 

  21. Nguyen M D, Nguyen L V, Jeon E H, Kim J H, Cheong M, Kim H S and Lee J S 2008 Fe-containing ionic liquids as catalysts for the dimerization of bicyclo [2.2.1] hepta-2, 5-diene J. Catal. 258 5

    Article  CAS  Google Scholar 

  22. Wu Y, Jin L, Xue Y, Lee I M and Kim C K 2010 Mechanisms of norbornadiene dimerization to Binor-S using cationic CoI, RhI, and IrI catalysts J. Comput. Chem. 31 2248

    Article  CAS  PubMed  Google Scholar 

  23. Lim H N and Dong G 2016 Catalytic cage formation via controlled dimerization of norbornadienes: An entry to functionalized HCTDs (heptacyclo [6.6. 0.02, 6.03, 13.04, 11.05, 9.010, 14] tetradecanes) Org. Lett. 18 1104

    Article  CAS  PubMed  Google Scholar 

  24. Farmer V and Welton T 2002 The oxidation of alcohols in substituted imidazolium ionic liquids using ruthenium catalysts Green Chem. 4 97

    Article  CAS  Google Scholar 

  25. Sitze M S, Schreiter E R, Patterson E V and Freeman R G 2001 Ionic liquids based on FeCl3 and FeCl2. Raman scattering and ab initio calculations Inorg. Chem. 40 2298

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida Y and Saito G 2006 Influence of structural variations in 1-alkyl-3-methylimidazolium cation and tetrahalogenoferrate (III) anion on the physical properties of the paramagnetic ionic liquids J. Mater. Chem. 16 1254

    Article  CAS  Google Scholar 

  27. Gol’dshleger N F, Azbel B I, Isakov Y I, Shpiro E S and Minachev K M 1996 Selective rhodium-containing zeolite catalysts for cyclodimerization of bicyclo [2.2.1] hepta-2, 5-diene J. Mol. Catal. A Chem. 106 159

    Article  CAS  Google Scholar 

  28. Ehrmaier A, Liu Y, Peitz S, Jentys A, Chin Y-HC, Sanchez-Sanchez M, et al. 2018 Dimerization of linear butenes on zeolite-supported Ni2+ ACS Catal. 9 315

    Article  CAS  Google Scholar 

  29. Bosnich B 2012 Asymmetric Catalysis (Springer Science & Business Media: Dordrecht) 103

    Google Scholar 

  30. Möller K and Bein T 2013 Mesoporosity—A new dimension for zeolites Chem. Soc. Rev. 42 3689

    Article  PubMed  CAS  Google Scholar 

  31. Jeong K, Kim J, Han J, Jeong B and Jeon J K 2017 Dimerization of bicyclo [2.2.1] hepta-2, 5-diene over various zeolite catalysts Top. Catal. 60 743

    Article  CAS  Google Scholar 

  32. Blackborow J R, Feldhoff U, Grevels F-W, Grubbs R H and Miyashita A 1979 Chemical synthesis with metal atoms. Cyclodimerization of norbornadiene via nickela-cyclopentane intermediates J. Organomet. Chem. 173 253

    Article  CAS  Google Scholar 

  33. Jeong K, Kim J, Han J and Jeon J-K 2017 Synthesis of high-energy-density fuel through the dimerization of bicyclo [2.2.1] hepta-2, 5-diene over a nanoporous catalyst J. Nanosci. Nanotechnol. 17 8255

    Article  CAS  Google Scholar 

  34. Han H, Zou J-J, Zhang X, Wang L and Wang L 2009 endo-to exo-Isomerization of dicyclopentadiene over zeolites Appl. Catal. A Gen. 367 84

    Article  CAS  Google Scholar 

  35. Kim T-W, Kleitz F, Paul B and Ryoo R 2005 MCM-48-like large mesoporous silicas with tailored pore structure: facile synthesis domain in a ternary triblock copolymer− butanol− water system J. Am. Chem. Soc. 127 7601

    Article  CAS  PubMed  Google Scholar 

  36. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F and Stucky G D 1998 Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores Science 279 548

    Article  CAS  PubMed  Google Scholar 

  37. Kim J, Han J, Kwon T S, Park Y-K and Jeon J-K 2014 Oligomerization and isomerization of dicyclopentadiene over mesoporous materials produced from zeolite beta Catal. Today 232 69

    Article  CAS  Google Scholar 

  38. Beck J S, Vartuli J, Roth W J, Leonowicz M, Kresge C, Schmitt K, et al. 1992 A new family of mesoporous molecular sieves prepared with liquid crystal templates J. Am. Chem. Soc. 114 10834

    Article  CAS  Google Scholar 

  39. Kim J, Shim B, Lee G, Han J, Kim J M and Jeon J-K 2018 Synthesis of high-energy-density fuel over mesoporous aluminosilicate catalysts Catal. Today 303 71

    Article  CAS  Google Scholar 

  40. Jang J-H, Lee S-C, Kim D-J, Kang M and Choung S-J 2005 Characterization of Pt-impregnated MCM-41 and MCM-48 and their catalytic performances in selective catalytic reduction for NOx Appl. Catal. A Gen. 286 36

    Article  CAS  Google Scholar 

  41. Zou J-J, Xu Y, Zhang X and Wang L 2012 Isomerization of endo-dicyclopentadiene using Al-grafted MCM-41 Appl. Catal. A Gen. 421 79

    Article  CAS  Google Scholar 

  42. Khan N, Abhyankar A, Nandi T and Eswara Prasad N 2019 Nickel nanocatalyst supported single-step hydroconversion of dicyclopentadiene (DCPD) into high energy-density fuel, exo-tetrahydrodicyclopentadiene (Exo-THDCPD) J. Nanosci. Nanotechnol. 19 7982

    Article  CAS  PubMed  Google Scholar 

  43. Farley C M and Uyeda C 2019 Organic reactions enabled by catalytically active metal–metal bonds Trends Chem. 1 497

    Article  CAS  Google Scholar 

  44. Pauson P and Khand I 1977 Uses of cobalt-carbonyl acetylene complexes in organic synthesis Ann. N Y Acad. Sci. 295 2

    Article  CAS  Google Scholar 

  45. Magnus P and Principe L M 1985 Origins of 1, 2-and 1, 3-stereoselectivity in dicobaltoctacarbonyl alkene-alkyne cyclizations for the synthesis of substituted bicyclo [3.3. 0] octenones Tetrahedron Lett. 26 4851

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Defence Research Development Organization for funding the present work through Grant No. ST/15-16/DRM-558 and authors are also thankful to Dr. Kavita Agarwal, DMSRDE-Kanpur and Dr. Shaibal Banerjee, DIAT-Pune for material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizamuddin Khan.

Supplementary Information (SI)

Below is the link to the electronic supplementary material.

Supplementary Information 1 (PDF 983 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Abhyankar, A.C. & Nandi, T. Cyclodimerization of norbornadiene (NBD) into high energy-density fuel pentacyclotetradecane (PCTD) over mesoporous silica supported Co–Ni nanocatalyst. J Chem Sci 133, 29 (2021). https://doi.org/10.1007/s12039-021-01890-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01890-w

Keywords

Navigation