Skip to main content
Log in

Analysis of deformation characteristics and stability mechanisms of typical landslide mass based on the field monitoring in the Three Gorges Reservoir, China

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Based on a large number of data including GPS monitoring of surface deformation and inclinometer monitoring of internal deformation over 7 years, we find that the displacement of a typical landslide mass has the stepped evolution characteristics as: the variation of the reservoir water level under the different years and months in the Three Gorges Reservoir and the deformation of landslide mass surges in the flood season. On the contrary, the deformation of landslide mass slows down in the non-flood season. Especially, in 2007, 2009 and 2011, the fluctuation of the surface monitoring displacement is more intense than that in the other years. In addition, the whole landslide mass has a characteristic of the trial-type sliding. The surface displacement is greater than the internal displacement. Based on that, deformation characteristics, stability mechanisms and the influencing factors of landslide mass are studied deeply. The results show that the drawdown of the water level of the Three Gorges Reservoir region is the main controlling factor of the deformation of the landslide mass. The results of the study have a significant value of reference on the stability analysis of landslide mass under the similar engineering geological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Alemdag S, Akgün A, Kaya A and Gokceoglu C 2014 A large and rapid planar failure: Causes, mechanism and consequences (Mordut, Gumushane, Turkey); Arab J. Geosci. 7 1205–1221.

    Article  Google Scholar 

  • Du J, Yin K and Lacasse S 2013 Displacement prediction in colluvial landslides, Three Gorges Reservoir, China; Landslide 10 203–218.

    Article  Google Scholar 

  • Fan H G, Liu Q Q and An Y 2010 Effects of fracture seepage on the stability of landslide during reservoir water level fluctuation; Disaster Adv. 3 306–308.

    Google Scholar 

  • Gokceoglu C, Sonmez H, Nefeslioglu H A, Duman T Y and Can T 2005 The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity; Eng. Geol. 81 65–83.

    Article  Google Scholar 

  • He K Q, Li X R and Yan X Q 2008 The landslides in the Three Gorges Reservoir region, China and the effects of water storage and rain on their stability; Env. Geol. 55 55–63.

    Article  Google Scholar 

  • Hu X L, Zhang M, Sun M J, Huang K X and Song Y J 2015 Deformation characteristics and failure mode of the Zhujiadian landslide in the Three Gorges Reservoir, China; Bull. Eng. Geol. Environ. 74 1–12.

    Article  Google Scholar 

  • Lee C 2004 Landslide potentiality of the Tsengwen Reservoir watershed, Taiwan, China; Int. J. Sedim. Res. 19 123–129.

    Google Scholar 

  • Longoni L, Papini M, Arosio D, Zanzi L and Brambilla D 2014 A new geological model for Spriana landslide; Bull. Eng. Geol. Environ. 73 959–970.

    Article  Google Scholar 

  • Mazaeva O, Khak V and Kozyreva E 2013 Model of erosion-landslide interaction in the context of reservoir water level variations (East Siberia, Russia): Factors, environment and mechanisms; J. Earth Syst. Sci. 122 1515–1531.

    Article  Google Scholar 

  • Ocakoglu F, Gokceoglu C and Ercanoglu M 2002 Dynamics of a complex mass movement triggered by heavy rainfall: A case study from NW Turkey; Geomorphology 42 329–341.

    Article  Google Scholar 

  • Ocakoglu F, Acikalin S, Gokceoglu C, Karabacak V and Cherkinsky A 2009 A multistory gigantic subaerial debris flow in an active fault scarp in NW Anatolia, Turkey: Anatomy, mechanism and timing; Holocene 19 955–965.

    Article  Google Scholar 

  • Panizzo A, Girolamo P D, Risio M D, Maistri A and Petaccia A 2005 Great landslide events in Italian artificial reservoir; Nat. Hazards Earth Syst. Sci. 5 733–740.

    Article  Google Scholar 

  • Pradhan B, Sezer E A, Gokceoglu C and Buchroithner M F 2010 Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia); IEEE Trans. Geosci. Remote Sens. 48 4164–4177.

    Article  Google Scholar 

  • Renato M, Michael H and Martin C D 2016 Developing an early warning system for a very slow landslide based on displacement monitoring; Nat. Hazards 81 887–907.

    Article  Google Scholar 

  • Su M B, Chen I H and Liao C H 2009 Using TDR cables and GPS for landslide monitoring in high mountain area; J. Geotech. Geoenviron. Eng. 135 1113–1121.

    Article  Google Scholar 

  • Tang H M, Li C D, Hu X L, Su A J, Wang L Q, Wu Y P, Robert C, Xiong C R and Li Y N 2014 Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring; Landslides 12 511–521.

    Article  Google Scholar 

  • Tang H M, Li C D, Hu X L, Wang L Q, Criss R, Su A J, Wu Y P and Xiong C R 2015 Deformation response of the Huangtupo landslide to rainfall and the changing levels of the Three Gorges Reservoir; Bull. Eng. Geol. Environ. 74 933–942.

    Article  Google Scholar 

  • Wang M and Qiao J P 2013 Reservoir-landslide hazard assessment based on GIS: A case study in Wanzhou section of the Three Gorges Reservoir; J. Mt. Sci. 10 1085–1096.

    Article  Google Scholar 

  • Wang F W, Zhang Y M, Huo Z T, Matsumoto T and Huang B L 2004 The July 14, 2003 Qianjiangping landslide, Three Gorges Reservoir, China; Landslide 1 157–162.

    Article  Google Scholar 

  • Wang F W, Wang G H, Sassa K, Takeuchi A, Araiba K, Zhang Y M and Peng X M 2005a Displacement monitoring and physical exploration on the Shuping landslide reactivated by impoundment of the Three Gorges Reservoir, China; In: Landslides, Springer, Berlin, Heidelberg, pp. 313–319.

  • Wang F, Wang G, Sassa K, Araiba K, Takeuchi A, Zhang Y, Huo Z, Peng X and Jin W 2005b Deformation monitoring and exploration on Shuping landslide induced by impoundment of the Three Gorges Reservoir, China; Ann. Dis. Prev. Res. Inst. Kyoto Univ. 48 405–412.

    Google Scholar 

  • Xia M, Ren G M, Zhu S S and Ma X L 2015 Relationship between landslide stability and reservoir water level variation; Bull. Eng. Geol. Environ. 74 909–917.

    Article  Google Scholar 

  • Yan Z L and Wang J J 2010 Influence of water level fluctuation on phreatic line in silty soil model slope; Eng. Geol. 113 90–98.

    Article  Google Scholar 

  • Yin Y and Peng X 2007 Failure mechanism on Qianjiangping landslide in the Three Gorges Reservoir region; Hydrogeol. Eng. Geol. 3 51–54.

    Google Scholar 

  • Zhang Y M, Liu G R, Chang H, Huang B L and Pan W 2004 Tectonic analysis on the Qianjiangping landslide in three Gorges reservoir area and a revelation; Yangtze River 35 24–26.

    Google Scholar 

  • Zhang T, Yan E, Cheng J and Zheng Y 2010 Mechanism of reservoir water in the deformation of Hefeng landslide; J. Earth Sci. 6 870–875.

    Article  Google Scholar 

  • Zhang G C, Xie N, Tang H M, Zhang L and Wu J P 2015 Survey and cause analyses of ground surface deformation near a foundation pit slope: A case study in the three Gorges area, China; Nat. Hazards 75 13–31.

    Article  Google Scholar 

  • Zhang T W, Cai Q X, Han L, Shu J S and Zhou W 2017 3D stability analysis method of concave slope based on the Bishopmethod; Int. J. Mining Sci. Technol. 27 365–370.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (No. 2015XKMS035), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the National Natural Science Foundation of China (Nos. 41602294, 41602310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyun Zhu.

Additional information

Corresponding editor: Navin Juyal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhu, S., Zhang, W. et al. Analysis of deformation characteristics and stability mechanisms of typical landslide mass based on the field monitoring in the Three Gorges Reservoir, China. J Earth Syst Sci 128, 9 (2019). https://doi.org/10.1007/s12040-018-1036-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-018-1036-y

Keywords

Navigation