Skip to main content

Advertisement

Log in

Long-term (2005–2012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Simultaneous long-term measurements of near-surface air pollutants at an urban station, New Delhi, were studied during 2005–2012 to understand their distribution on different temporal scales. The annual mean mass concentrations of nitrogen dioxide (\(\hbox {NO}_{2})\), sulphur dioxide (\(\hbox {SO}_{2})\), particulate matter less than \(10\,\upmu \hbox {m}\) (\(\hbox {PM}_{10})\) and suspended particulate matter (SPM) were found to be \(62.0\,{\pm }\,27.6\), \(12.5\,{\pm }\,8.2\), \(253.7\,{\pm }\,134\) and \(529.2\,{\pm }\,213.1\,\upmu \hbox {g}/\hbox {m}^{3}\), respectively. The 24-hr mean mass concentrations of \(\hbox {NO}_{2}\), \(\hbox {PM}_{10}\) and SPM were exceeded on \(\sim \)27%, 87% and 99% days that of total available measurement days to their respective National Ambient Air Quality Standard (NAAQS) level. However, it never exceeded for \(\hbox {SO}_{2}\), which could be attributed to reduction of sulphur in diesel, use of cleaner fuels such as compressed natural gas, LPG, etc. The mean mass concentrations of measured air pollutants were found to be the highest during the winter/post-monsoon seasons, which are of concern for both climate and human health. The annual mean mass concentrations of \(\hbox {NO}_{2}\), \(\hbox {PM}_{10}\) and SPM showed an increasing trend while \(\hbox {SO}_{2}\) appears to be decreasing since 2008. Air mass cluster analysis showed that north–northwest trajectories accounted for the highest mass concentrations of air pollutants (more prominent in the winter/post-monsoon season); however, the lowest were associated with the southeast trajectory cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Attri A K, Kumar U and Jain V K 2001 Formation of ozone by fireworks; Nature 411(6841) 1015, https://doi.org/10.1038/35082634.

    Article  Google Scholar 

  • Awasthi A, Aggarwal R, Mittal S K, Singh K and Gupta P K 2011 A study of size and mass distribution of particulate matter due to crop residue burning with seasonal variation in rural area of Punjab, India; J. Environ. Monit. 13(4) 1073–1081.

    Article  Google Scholar 

  • Badarinath K V S, Chand T R K and Prasad V K 2006 Agriculture crop residue burning in the Indo-Gangetic plains a study using IRS-P6AWiFS Satellite data; Curr. Sci. 91(8) 1085–1089.

    Google Scholar 

  • Barman S C, Singh R, Negi M P S and Bhargava S K 2009 Fine particles (\(\text{ PM }_{2.5})\) in ambient air of Lucknow city due to fireworks on Diwali festival; J. Environ. Biol. 30(5) 625–632.

    Google Scholar 

  • Bishoi B, Prakash A and Jain V K 2009 A comparative study of air quality index based on factor analysis and US-EPA methods for an urban environment; Aerosol. Air. Qual. Res. 1 1–17.

    Article  Google Scholar 

  • Cao J J, Zhu C S, Chow J C, Watson J G, Han Y M, Wang Ge-hui Shen Z X and Zhi-Sheng A 2009 Black carbon relationships with emissions and meteorology in Xi’an; China. Atmos. Res. 94 194–202.

    Article  Google Scholar 

  • Census of India 2011 http://censusindia.gov.in/2011-prov-HrBresults/prov_data_products_delhi.htmlHrB.

  • Cheng S and Lam S K 1998 Analysis of winds affecting air pollution concentrations in Hong Kong; Atmos. Environ. 32(14–15) 2559–2567.

    Article  Google Scholar 

  • Chowdhury S and Dey S 2016 Cause-specific premature death from ambient PM\(_{2.5}\) exposure in India: Estimate adjusted for baseline mortality; Environ. Inter. 91 283–290.

    Article  Google Scholar 

  • CPCB (Central Pollution Control Board) 2012 National ambient air quality status and trends–2012, August 2014; Central Pollution Control Board, Delhi, India.

  • Dey S and Di Girolamo L 2010 A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 yr (2000–2008) of multiangle imaging spectroradiometer (MISR) data; J. Geophys. Res. 115 D15204, https://doi.org/10.1029/2009JD013395.

    Article  Google Scholar 

  • Draxler R R and Rolph G D 2010 HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model; http://ready.arl.noaa.gov/HYSPLIT.php, NOAA Air Resources Laboratory, Silver Spring, MD.

  • Elshazly S M, Takahashi M, EL-Nouby Adam M, Kassem K O and Hassan A A 2012 Simulation of some air pollutants and weather parameters using WRF-Chem model in Cairo and Qena cities/Egypt; World Environ. 2(6) 127–134.

    Article  Google Scholar 

  • Gaur A, Tripathi S N, Kanawade V P, Tare V and Shukla S P 2014 Four-year measurements of trace gases (SO\(_2\), NO\(_{x}\), CO, and O\(_3\)) at an urban location, Kanpur, in Northern India; J. Atmos. Chem. 71(4) 283–301.

    Article  Google Scholar 

  • George M P, Kaur B J, Sharma A and Mishra S 2013 Delhi smog 2012: Cause and concerns; J. Pollut. Eff. Cont. 1(1) 103, https://doi.org/10.4172/jpe.1000103.

    Article  Google Scholar 

  • Goyal P and Sidhartha S 2002 Effect of winds on \(\text{ SO }_{2}\) and SPM concentrations in Delhi; Atmos. Environ. 36 2925–2930.

    Article  Google Scholar 

  • Goyal P and Sidhartha S 2003 Present scenario of air quality in Delhi: A case study of CNG Implementation; Atmos. Environ. 37 5423–5431.

    Article  Google Scholar 

  • Goyal S K, Ghatge S V, Nema P and Tamhane S M 2006 Understanding urban vehicular pollution problem vis-a-vis ambient air quality – Case study of a megacity (Delhi, India); Environ. Model. Assess. 119 557–569.

    Article  Google Scholar 

  • Gurjar B R, Van Aardenne J A, Lelieveld I and Mohan M 2004 Emission estimates and trends (1990–2000) for megacity Delhi and implications; Atmos. Environ. 38 5663–5681.

    Article  Google Scholar 

  • Gurjar B R, Khaiwal R and Nagpure A S 2016 Air pollution trends over Indian megacities and their local-to-global Implications; Atmos. Environ. 142 475–495.

    Article  Google Scholar 

  • Guttikunda S K and Calori G 2013 A GIS band emissions inventory at 1 km \(\times \)1 km spatial resolution for air pollution analysis in Delhi, India; Atmos. Environ. 67 101–111.

    Article  Google Scholar 

  • Guttikunda S K, Goel R and Pant P 2014 Nature of air pollution, emission sources, and management in the Indian cities; Atmos. Environ. 95 501–510.

    Article  Google Scholar 

  • Hyvarinen A P, Lihavainen H, Komppula M, Panwar T S, Sharma V P, Hooda R K and Viisanen Y M 2010 Aerosol measurements at the Gaul Pahari EUCAARI station: Preliminary results from in-situ measurements; Atmos. Chem. Phys. 10 7241–7252.

    Article  Google Scholar 

  • IPCC 2013 Summary for policymakers; In: Climate change 2014: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (eds) Stocker T F, Qin D, Plattner G-K, Tignor M, Allen S K and Boschung J et al., Cambridge University Press, Cambridge, UK and NY, USA.

  • Kanamitsu M 1989 Description of the NMC global data assimilation and forecast system; Wea. Forecast. 4 335–342.

    Article  Google Scholar 

  • Kanawade V P, Tripathi S N, Siingh D K, Gautam A S, Srivastava A K, Kamra A K, Soni V K and Sethi V 2014 Observations of new particle formation at two distinct Indian subcontinental urban locations; Atmos. Environ. 96 370–379.

    Article  Google Scholar 

  • Kaskaoutis D G, Kumar S, Sharma D, Singh R P, Kharol S K, Sharma M, Singh A K, Singh S, Singh A and Singh D 2014 Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India; J. Geophys. Res. 119 5424–5444.

    Google Scholar 

  • Kathuria V 2005 Impact of CNG on Delhi’s air pollution; Econ. Polit. Wkly. 40(9) 1907–1916.

    Google Scholar 

  • Kesarkar A P, Dalvi M, Kaginalkar A and Ojha A 2007 Coupling of the weather research and forecasting model with AERMOD for pollutant dispersion modeling. A case study for \(\text{ PM }_{10}\) dispersion over Pune, India; Atmos. Environ. 41 1976–1988.

    Article  Google Scholar 

  • Kroll J H and Seinfeld J H 2008 Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere; Atmos. Environ. 42 3593–3624.

    Article  Google Scholar 

  • Krotkov N A, McLinden C A, Li C, Lamsal L N, Celarier E A, Marchenko S V, Swartz W H, Bucsela E J, Joiner J, Duncan B N, Boersma K F, Veefkind J P, Levelt P F, Fioletov V E, Dickerson R R, He H, Lu Z and Streets D G 2016 Aura OMI observations of regional \(\text{ SO }_{2}\) and \(\text{ NO }_{2}\) pollution changes from 2005 to 2015; Atmos. Chem. Phys. 16 4605–4629, https://doi.org/10.5194/acp-16-4605-2016.

    Article  Google Scholar 

  • Kumar A and Foster T C 2007 Shift in induction mechanisms underlies an age-dependent increase in DHPG-induced synaptic depressions at CA3-CA1 synapse; J. Neurophys. 98(5) 2729–2736, https://doi.org/10.1152/jn.00514.2007.

    Article  Google Scholar 

  • Maji S, Ahmed S and Siddiqui W A 2015 Air quality assessment and its relation to potential health impacts in Delhi, India; Curr. Sci. 109(5) 902–909.

    Google Scholar 

  • Mashelkar R A et al. 2002 Interim report of the expert committee on auto fuel policy; Government of India, New Delhi.

  • Mishra D and Goyal P 2015 Quantitative assessment of the emitted criteria pollutant in Delhi urban area; Aerosol Air. Qual. Res. 15 1601–1612.

    Article  Google Scholar 

  • Mishra D and Goyal P 2016 Neuro-fuzzy approach to forecast \(\text{ NO }_{2}\) pollutants addressed to air quality dispersion model over Delhi, India; Aerosol Air. Qual. Res. 16 166–174.

    Article  Google Scholar 

  • Pachauri T et al. 2013 SEM-EDX characterization of individual coarse particles in Agra, India; Aerosol Air. Qual. Res. 13 523–536.

    Article  Google Scholar 

  • Pandithurai G, Dipu S, Dani K K, Tiwari S, Bisth D S, Devara P C S and Pinker R T 2008 Aerosol radiative forcing during dust events over New Delhi, India; J. Geophys. Res. 113 D13209, https://doi.org/10.1029/2008JD009804.

    Article  Google Scholar 

  • Pipal A S, Tiwari S, Satsangi P G, Taneja A, Bisht D S, Srivastava A K and Srivastava M K 2014 Sources and characteristics of carbonaceous aerosols at Agra ‘World heritage site’ and Delhi ‘capital city of India’; Environ. Sci. Pollut. Res. 21 8678–8691.

    Article  Google Scholar 

  • Pope III C A and Dockery D W 2006 Health effects of fine particulate air pollution: Lines that connect; J. Air Waste Manag. 56 709–742.

    Article  Google Scholar 

  • Poschl U 2005 Atmospheric aerosols: Composition, transformation, climate and health effects; Angew. Chem. Int. Ed. 44(46) 7520–7540.

    Article  Google Scholar 

  • Purdue L J, Dudley J E, Clements J B and Thompson R J 1972 Reinvestigation of the Jacobs–Hochheiser procedure for determining nitrogen dioxide in ambient air; Environ. Sci. Technol. 6(2) 152–154.

    Article  Google Scholar 

  • Ramanathan V et al. 2001 Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze; J. Geophys. Res. 106 28371–28398.

    Article  Google Scholar 

  • Ramsey N R, Klein P M and Moore III B 2014 The impact of meteorological parameters on urban air quality; Atmos. Environ. 86 58–67.

    Article  Google Scholar 

  • Reddy M S and Venkataraman C 2002 Inventory of aerosol and sulphur dioxide emissions from India, Part II – Biomass combustion; Atmos. Environ. 36(4) 677–697.

    Article  Google Scholar 

  • Ruellan S and Cachier H 2001 Characterisation of fresh particulate vehicular exhausts near a Paris High flow road; Atmos. Environ. 35 453–468.

    Article  Google Scholar 

  • Sahu S K, Beig G and Parkhi N 2011 Anthropogenic emission of \(\text{ PM }_{2.5}\) and \(\text{ PM }_{10}\) for air quality forecasting during Commonwealth Games, 2010, Delhi; Atmos. Environ. 45 6180–6190.

    Article  Google Scholar 

  • Sahu S K, Beig G and Parkhi N 2015 High resolution emission inventory of \(\text{ NO }_{x}\) and CO for mega city Delhi, India; Aerosol Air. Qual. Res. 15 1137–1144.

    Article  Google Scholar 

  • Saxena P, Bhardwaj R and Ghosh C 2012 Status of air pollutants after implementation of CNG in Delhi; Curr. World Environ. 7(1) 109–115.

    Article  Google Scholar 

  • Sharma S, Brook J R, Cachier H, Chow J, Gaudenzi A and Lu G 2002 Light absorption and thermal measurements of black carbon in different regions of Canada; J. Geophys. Res. 107(D24) 4771.

    Article  Google Scholar 

  • Sharma D, Srivastava A K, Ram K, Singh A and Singh D 2017 Temporal variability in aerosol characteristics and its radiative properties over Patiala, northwestern part of India: Impact of agricultural biomass burning emissions; Environ. Pollut. 231 1030–1041.

    Article  Google Scholar 

  • Singh A and Dey S 2012 Influence of aerosol composition on visibility in megacity Delhi; Atmos. Environ. 62 367–373.

    Article  Google Scholar 

  • Singh R P, Dey S and Holben B 2003 Aerosols behaviour in Kanpur during Diwali festival; Curr. Sci. 84(10) 1302–1303.

    Google Scholar 

  • Singh B P, Srivastava A K, Tiwari S, Singh S, Singh R K, Bisht D S, Lalm D M, Singh A K, Mall R K and Srivastava M K 2014 Radiative impact of fireworks at a tropical Indian location: A case study; Adv. Met. ID 197072 1–8, https://doi.org/10.1155/2014/197072.

    Article  Google Scholar 

  • Srivastava A K, Tiwari S, Devara P C S, Bisht D S, Srivastava M K, Tripathi S N, Goloub P and Holben B N 2011 Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: Implications to climatic impact; Ann. Geophys. 29 789–804.

    Article  Google Scholar 

  • Srivastava A K, Singh S, Tiwari S and Bisht D S 2012 Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin; Environ. Sci. Pollut. Res. 19 1144–1158.

    Article  Google Scholar 

  • Srivastava A K, Soni V K, Singh S, Kanawade V P, Singh N, Tiwari S and Attri S D 2014 An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: A case study; Sci. Total Environ. 493 526–534.

    Article  Google Scholar 

  • Timmers V R J H and Achten P A J 2016 Non-exhaust PM emissions from electric vehicles; Atmos. Environ. 134 10–17.

    Article  Google Scholar 

  • Tiwari S, Chate D M, Srivastava M K, Safai P D, Srivastava A K, Bisht D S and Padmanabhamurty B 2012a Statistical evaluation of PM\(_{10}\) and distribution of \(\text{ PM }_{1}\), \(\text{ PM }_{2.5}\) and \(\text{ PM }_{10}\) in ambient air due to extreme firework episodes (Deepawali Festivals) in mega city Delhi; Nat. Hazards 61 521–531.

    Article  Google Scholar 

  • Tiwari S, Chate D M, Pragya P, Ali K and Bisht D S 2012b Variations in mass of the \(\text{ PM }_{10}\), \(\text{ PM }_{2.5}\) and \(\text{ PM }_{1}\) during the monsoon and the winter at New Delhi; Aerosol Air. Qual. Res. 12 20–29.

    Article  Google Scholar 

  • Tiwari S, Srivastava A K, Bisht D S, Parmita P, Srivastava M K and Attri S D 2013a Diurnal and seasonal variations of black carbon and \(\text{ PM }_{2.5}\) over New Delhi, India: Influence of meteorology; Atmos. Res. 125–126 50–62.

    Article  Google Scholar 

  • Tiwari S, Bisht D S, Srivastava A K, Shivashankara G P and Kumar R 2013b Inter-annual and intra-seasonal variability in fine mode particles over Delhi: Influence of meteorology; Adv. Met. 2013(740453) 1–9.

  • Tiwari S, Bisht D S, Srivastava A K, Pipal A S, Taneja A, Srivastava M K and Attri S D 2014 Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India; Atmos. Res. 145–146 45–56.

    Article  Google Scholar 

  • Verma A K, Saxena A, Khan A H and Sharma G D 2015 Air pollution problems in Lucknow city, India: A review; J. Environ. Res. Dev. 9(4) 1176–1188.

    Google Scholar 

  • Wallace J and Kanaroglou P 2009 The effect of temperature inversions on ground-level nitrogen dioxide (\(\text{ NO }_{2})\) and fine particulate matter (\(\text{ PM }_{2.5})\) using temperature profiles from the Atmospheric Infrared Sounder (AIRS); Sci. Total Environ. 407(18) 5085–5095.

    Article  Google Scholar 

  • Wiedinmyer C, Yokelson R J and Gullett B K 2014 Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste; Environ. Sci. Technol. 48(16) 9523–9530.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the CPCB for providing air quality data and India Meteorological Department for surface meteorological data of New Delhi, which have been used in this study. We are also thankful to NOAA Air Resources Laboratory (ARL) for providing HYSPLIT PC-version model via http://www.arl.noaa.gov/ready.php. NK expresses his gratitude to Director, IITM for allowing him to pursue his Ph.D. thesis and providing the necessary infrastructure facilities at IITM (Delhi Branch). The authors are grateful to the anonymous reviewers for their constructive comments and suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Kishore.

Additional information

Corresponding editor: Suresh Babu

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishore, N., Srivastava, A.K., Nandan, H. et al. Long-term (2005–2012) measurements of near-surface air pollutants at an urban location in the Indo-Gangetic Basin. J Earth Syst Sci 128, 55 (2019). https://doi.org/10.1007/s12040-019-1070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1070-4

Keywords

Navigation