Skip to main content
Log in

Geochemical characterisation of the Neoarchaean newer dolerite dykes of the Bahalda region, Singhbhum craton, Odisha, India: Implication for petrogenesis

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The mafic dyke swarm, newer dolerite dykes (NDDs) intrudes the Archaean Singbhum granite of the Singhbhum craton, eastern India. The present investigation focuses on the petrography and geochemistry of 19 NNE–SSW to NE–SW trending NDDs in two sectors in the northern and south-western part of Bahalda town, Odisha, Singhbhum. Chondrite normalised rare earth element (REE) patterns show light REE (LREE) enrichment among majority of the 13 dykes while the remaining six dykes show a flat REE pattern. Critical analyses of some important trace element ratios like Ba/La, La/Sm, Nb/Y, Ba/Y, Sm/La, Th/La, La/Sm, Nb/Zr, Th/Zr, Hf/Sm, Ta/La and Gd/Yb indicate that the dolerite dykes originated from a heterogeneous spinel peridotite mantle source which was modified by fluids and melts in an arc/back arc setting. REE modelling of these dolerite dykes were attempted on LREE-enriched representative of NDD which shows that these dykes might have been generated by 5–25% partial melting of a modified spinel peridotite source which subsequently suffered around 30% fractional crystallisation of olivine, orthopyroxene and clinopyroxene. The reported age of ~2.75–2.8 Ma seems to be applicable for these dykes and this magmatism appears to be contemporaneous with major scale anorogenic granitic activity in the Singhbhum craton marking a major event of magmatic activity in eastern India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Acharyya S K 1993 Greenstones from Singhbhum Craton, their Archaean character, oceanic crustal affinity and tectonics; Proc. Nat. Acad. Sci., India 63 211–222.

    Google Scholar 

  • Aldanmaz E, Pearce J A, Thirlwall M F and Mitchell J G 2000 Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey; J. Volcanol. Geotherm. Res. 102 67–95.

    Google Scholar 

  • Bandyopadhyay P K, Chakrabarti A K, DeoMurari M P and Misra S 2001 2.8 ga old anorogenic granite–acid volcanics association from Western margin of the Singhbhum–Orissa Craton, Eastern India; Gondwana Res. 4 465–475.

    Google Scholar 

  • Bedard J H 2005 Partitioning coefficients between olivine and silicate melts; Lithos 83 394–419.

    Google Scholar 

  • Bleeker W and Ernst R E 2006 Short-lived mantle generated magmatic events and their dyke swarms: The key unlocking Earth’s paleogeographic record back to 2.6 Ga; In: Dyke swarms – Time markers of crustal evolution (eds) Hanski E, Mertanen S, Rämö T and Vuollo J, Taylor & Francis, London, pp. 3–26.

  • Bose M K 2000 Mafic–ultramafic magmatism in the eastern Indian Craton – A review; Geol. Surv. India, Spec. Publ. 55 227–258.

    Google Scholar 

  • Bose M K 2008 Proterozoic dykes from Singhbhum granite pluton; In: Indian dykes (eds) Srivastava S and Rao C, Narosa Publication, New Delhi, pp. 413–445.

    Google Scholar 

  • Bose M K, Chakraborti M K and Saunders A D 1989 Geochemistry of the lavas from Proterozoic Dalma volcanic belt, Singhbhum, Eastern India; Geol. Rundchau. 70 504–518.

    Google Scholar 

  • Bose S, Das K, Kimura K, Hidaka H, Dasgupta A, Ghosh G and Mukhopadhyay 2016 Neoarchean tectonothermal imprints in the Rengali Province, eastern India and their implication on the growth of Singhbhum Craton: Evidence from zircon U–Pb SHRIMP data; J. Metamorph. Geol. 34 743–764.

    Google Scholar 

  • Cadman A C, Heamn L, Tarney J, Wardle R and Krogh T E 1993 U–Pb geochronology and geochemical variation within two Proterozoic mafic dyke swarms, Labrador; Can. J. Earth Sci. 30 1490–1504, https://doi.org/10.1139/e93-128.

    Article  Google Scholar 

  • Chakraborti T M, Ray A and Deb G K 2016 Computation of parent magma compositions of a Layered Gabbro Suite around Kuliana, Orissa, Eastern India: Implications for magmatic evolution and paleotectonic setting; J. Geol. 124 723–741.

    Google Scholar 

  • Coffin M F and Eldholm O 1994 Large igneous provinces: Crustal structure, dimensions, and external consequences; Rev. Geophys. 32 1–36.

    Google Scholar 

  • Coldwell B, Clemens J and Petford N 2011 Deep crustal melting in Peruvian Andes: Felsic magma generation during delamination and uplift; Lithos 125(1–2) 272–286.

    Google Scholar 

  • Dostal J, Keppie J D and Murphy J B 1990 Geochemistry of Late Proterozoic basaltic rocks from southeastern Cape Breton Island, Nova Scotia; Can. J. Earth Sci. 27 619–631.

    Google Scholar 

  • Douce A E P 1999 What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol. Soc. London Spec. Publ. 168 55–75.

    Google Scholar 

  • Dunn J A 1929 The geology of north Singhbhum including parts of Ranchi and Manbhum districts; Mem. Geol. Surv. India 54(2) 1166.

  • Dunn J A and Dey A K 1942 Geology and petrology of Eastern Singhbhum and surrounding areas; Mem. Geol. Surv. India 69(2) 261–456.

    Google Scholar 

  • Escrig S, Bézos A, Goldstein S L, Langmuir C H and Michael P J 2009 Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin–Tonga arc system; Geochem. Geophys. Geosyst. 10(4) 1–33.

    Google Scholar 

  • Ewart A, Collerson K D, Regelous M, Wendt J I and Niu Y 1998 Geochemical evolution within the Tonga–Kermadec Lau arc back-arc systems: The role of varying mantle wedge composition in space and time; J. Pet. 39 331–368.

    Google Scholar 

  • Ernst R E 2014 Large igneous provinces; Cambridge University Press, Cambridge, 653p.

    Google Scholar 

  • Ernst R E, Bleeker W, Söderlund U and Kerr A C 2013 Large igneous provinces and supercontinents: Toward completing the plate tectonic revolution; Lithos 174 1–14.

    Google Scholar 

  • Evans D A D 2013 Reconstructing pre-Pangean supercontinents; Geol. Soc. Am. Bull. 125 1735–1751.

    Google Scholar 

  • Fabries J, Bodinier J L, Dupuy C, Lorand J P and Benkerrou C 1989 Evidence for modal metasomatism in the erogenic spinel lherzolite body from Caussou (Northeastern Pyrenees, France); J. Pet. 30 199–228.

    Google Scholar 

  • Fyfe W S 1978 Evolution of earth’s crust-modern plate tectonics to ancient hot spot tectonics; Chem. Geol. 23 89–114.

    Google Scholar 

  • Fyfe W S 1992 Magma underplating of continental- crust; J. Volcanol. Geotherm. Res. 50 33–40.

    Google Scholar 

  • Govindaraju K 1994 Compilation of working values and sample description for 383 geostandards newsletter; J. Geostand. Geoanal. 18 158.

    Google Scholar 

  • Halls H 2008 The importance of integrating paleomagnetic studies of proterozoic dykes with U-Pb geochronology and geochemistry; In: Indian dykes: Geochemistry, geophysics and geochronology (eds) Srivastava R K, Sivaji C and Rao N V C, Narosa Publishing House Pvt. Ltd., New Delhi, India, pp. 1–22.

    Google Scholar 

  • He Y, Li S, Hoefs J, Huang F, Liu S and Hou Z 2011 Post-collisional granitoids from the double orogen: New evidence for partial melting of a thickened crust; Geochim. Cosmochim. Acta 75(13) 3815–3838.

    Google Scholar 

  • Huppert H E and Sparks R S J 1988 The generation of granitic magmas by intrusion of basalt into the continental crust; J. Pet. 29 599–624.

    Google Scholar 

  • Irvine T A and Baragar W R A 1971 A guide to chemical classification of common volcanic rocks; Can. J. Earth Sci. 8 523–548.

    Google Scholar 

  • Jones H C 1934 The iron ore deposits of Bihar and Orissa; Geol. Surv. India Mem. 63(2) 167–302.

  • Kepezhinkas P, McDermott F, Defant M J, Hochstaedter A and Drummond M S 1997 Trace element and Sr–Nd–Pb isotopic constraints on a three component model of Kamchatka Arc petrogenesis; Geochim. Cosmochim. Acta 61(3) 577–600.

    Google Scholar 

  • Krishnan M S 1936 The dyke rocks of Keonjhar state, Bihar and Orissa; Rec. Geol. Surv. India 71 105–120.

    Google Scholar 

  • Kumar A, Parashuramulu V, Shankar R and Besse J 2017 Evidence for a Neoarchean LIP in the Singhbhum Craton, eastern India: Implications to Vaalbara supercontinent; Precamb. Res. 292 163–174.

    Google Scholar 

  • La Fleche M R, Camire G and Jenner G A 1998 Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen islands, Quebec, Canada; Chem. Geol. 148 115–136.

    Google Scholar 

  • Le Bas M J 2000 IUGS reclassification of the high-Mg and picritic volcanic rocks; J. Pet. 41 1467–1470.

    Google Scholar 

  • Mahadevan T M 2002 Geology of Bihar and Jharkhand; Geol. Soc. India Bangalore, 563p.

    Google Scholar 

  • Maity B, Ray J, Chattopadhyay B, Sengupta S, Nandy S and Saha S 2008 Contrasting petrological variants in newer Dolerite dyke swarm Around Bisoi, Eastern Indian shield: Insights from petrography and mineral chemistry; In: Indian dykes: Geochemistry, geophysics and geochronology (eds) Srivastava R K, Sivaji C H and Chalapathi Rao N V, Narosa Publishing House Pvt. Ltd., New Delhi, pp. 447–470.

    Google Scholar 

  • Mallik A K and Sarkar A 1994 Geochronology and geochemistry of mafic dykes from the Precambrians of Keonjhar, Orissa; Indian Miner. 48 13–24.

    Google Scholar 

  • Mandal N, Mitra A K, Misra S and Chakraborty C 2006 Is the outcrop topology of dolerite dikes of the Precambrian Singhbhum Craton fractal? J. Earth Syst. Sci. 115(6) 643–660.

    Google Scholar 

  • Manikyamba C, Ray J, Ganguly S, Singh M R, Santosh M, Saha A and Satyanarayanan M 2015 Boninitic metavolcanic rocks and island arc tholeiites from the Older Metamorphic group (OMG) of Singhbhum Craton, Eastern India: Geochemical evidence for Archean subduction processes; Precamb. Res. 271 138–159.

    Google Scholar 

  • Meschede M 1986 A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram; Chem. Geol. 56 207–218.

    Google Scholar 

  • Mir A R, Alvi S H and Balaram V 2010 Geochemistry of mafic dikes in the Singhbhum Orissa Craton: Implications for subduction-related metasomatism of the mantle beneath the eastern Indian Craton; Int. Geol. Rev. 52 79–94.

    Google Scholar 

  • Mir A R, Alvi S H and Balaram V 2011 Geochemistry of the mafic dykes in parts of the Singhbhum granitoid complex: Petrogenesis and tectonic setting; Arabian J. Geosci. 4 933–943.

    Google Scholar 

  • Misra S 2006 Precambrian chronostratigraphic growth of Singhbhum–Orissa Craton, Eastern Indian Shield: An alternative model; J. Geol. Soc. India 67 356–378.

    Google Scholar 

  • Misra S, Moitra S, Bhattacharya S and Shivaraman T V 1999 Archaean granitoids at the contact of Eastern Ghats Granulite Belt and Singhbhum-Orissa Craton in Bhuban-Rengali sector, Orissa, India; Gondwana Res. 3 205–213.

    Google Scholar 

  • Mukhopadhyay D 2001 The Archean nucleus of Singhbhum: The present state of knowledge; Gondwana Res. 4 307–318.

    Google Scholar 

  • Mukhopadhyay J, Ghosh G, Zimmermann U, Guha S and Mukherjee T 2012 A 3.51 Ga bimodal volcanics-BIF-ultramafic succession from singhbhum Craton: Implications for Paleoarchean geodynamic processes from the oldest greenstone succession of the Indian sub-continent; Geol. J. 47 284–311.

    Google Scholar 

  • Nagasawa H, Schreiber H D and Morris R V 1980 Experimental mineral/liquid partition coefficients of the rare earth elements/REE/, SC and SR for perovskite, spinel and melilite; Earth Planet. Sci. Lett. 46 431–437.

    Google Scholar 

  • Nelson D R, Bhattacharyaa H N, Thernb E R and Altermann W 2014 Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India; Precamb. Res. 255 412–432.

    Google Scholar 

  • Neumann R 1991 Ultramafic and mafic xenoliths from Hierro, Canary islands: Evidence for melt infiltration in the upper mantle; Contrib. Mineral. Petrol. 106(2) 236–252.

    Google Scholar 

  • Pearce J 1983 Role of sub-continental lithosphere in magma genesis at active continental margin; In: Continental basalts and mantle xenoliths (eds) Hawkesworth C J and Norry M J, Shiva, Nantwich, pp. 230–249.

    Google Scholar 

  • Pearce J 1996 A users guide to basalt discrimination diagrams; In: Trace element geochemistry of volcanic rocks: Applications for massive sulfide exploration: Geological association of Canada, short course notes (ed.) Wyman D A, Vol. 12, pp. 79–113.

  • Pearce J A 2008 Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust; Lithos 100 14–48.

    Google Scholar 

  • Peate D W, Kokfelt T F, Hawkesworth C J, Van Calsteren P W, Hergt J M and Pearce J A 2001 U-series isotope data on Lau basin glasses: The role of subduction related fluids during melt generation in back-arc basins; J. Pet. 42 1449–1470.

    Google Scholar 

  • Pisarevsky S A, Biswal T K, Wang X-C, De Waele B, Ernst R, Söderlund U, Tait J A, Ratre K, Singh Y K and Cleve M 2013 Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: Implications for the Mesoproterozoic supercontinent; Lithos 174 125–143.

    Google Scholar 

  • Plank T 2005 Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents; J. Petrol. 46 921–944.

    Google Scholar 

  • Plank T and Langmuir C H 1998 The geochemical composition of subducting sediment and its consequences for the crust and mantle; Chem. Geol. 145 325–394.

    Google Scholar 

  • Poldervaart A and Gilkey A K 1954 On clouded plagioclase; Am. Mineral. 39(1–2) 75–91.

    Google Scholar 

  • Rappa R P, Shimizu N, Normanc M D and Applegatead G S 1999 Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa; Chem. Geol. 160 335–356.

    Google Scholar 

  • Regelous M K, Collerson D, Ewart A and Wendt J I 1997 Trace element transport rates in subduction zones: Evidence from Th, Sr and Pb isotope data for Tonga–Kermadec arc lavas; Earth Planet. Sci. Lett. 150 291–302.

    Google Scholar 

  • Roy A, Sarkar A, Jeyakumar S, Aggarwal S K, Ebihara M and Satoh H 2004 Late Archaean mantle metasomatism below eastern Indian Craton: Evidence from trace elements, REE geochemistry and Sr–Nd–O isotope systematics of ultramafic dykes; Earth Planet. Sci. Lett. 113 649–665.

    Google Scholar 

  • Saha A K 1949 Dolerite dykes and sills around Chaibasa; Q. J. Geol., Min. Metall. Soc. India 21 77–83.

    Google Scholar 

  • Saha A K 1952 On porphyry dykes near Dalsara, Mayurbhanj; Sci. Culture 18 250–258.

    Google Scholar 

  • Saha A K 1994 Crustal evolution of North Singhbhum–Orissa, eastern India; Geol. Soc. India Mem. 27 341p.

    Google Scholar 

  • Saha A K, Sankaran A V and Bhattacharyya T K 1973 Geochemistry of the newer dolerite suite of intrusions within the Singhbhum granite; Geol. Soc. India 14 324–346.

    Google Scholar 

  • Samal A K, Srivastava R K, Ernst R E and Sodurland U 2019 Neoarchean-Mesoproterozoic Mafic Dyke Swarms of the Indian shield mapped using Google Earth (images and ArcGIS” and links with large igneous province; In: Dyke swarms of the world: A modern perspective (eds) Srivastava R, Ernst R and Peng P, Springer Geology, Springer, Singapore, pp. 335–390.

    Google Scholar 

  • Sarkar S N and Saha A K 1977 The present status of the Precambrian stratigraphy, tectonics and geochronology of Singhbhum–Keonjhar–Mayurbhanj region, Eastern India; Indian J. Earth Sci. 4 37–65.

    Google Scholar 

  • Sarkar S N, Saha A K and Miller J A 1969 Geochronology of the Pre-Cambrian rocks of Singhbhum and adjacent regions, Eastern India; Geol. Mag. 106 15–45.

    Google Scholar 

  • Shankar R, Vijayagopal B and Kumar A 2014 Precise Pb–Pb baddeleyite ages of 1765 ma for a Singhbhum ‘newer dolerite’ dyke swarm; Curr. Sci. 106 1306–1309.

    Google Scholar 

  • Sen C and Dunn T 1995 Experimental modal metasomatism of a spinel lherzolite and the production of amphibole-bearing peridotite; Contrib. Mineral. Petrol. 119 422–432.

    Google Scholar 

  • Sengupta P and Ray A 2012 Newer Dolerite dykes, Jharkhand, India: A case study of magma generation, differentiation and metasomatism in a subduction zone setting; Geochem. J. 46(6) 477–491.

    Google Scholar 

  • Sengupta P, Ray A and Pramanik S 2014 Mineralogical and chemical characteristics of Newer Dolerite Dyke around Keonjhar, Orissa: Implication for hydrothermal activity in subduction zone setting; J. Earth Syst. Sci. 123(4) 887–904.

    Google Scholar 

  • Shellnutt J G and MacRae N D 2012 Petrogenesis of the Mesoproterozoic (1.23 Ga) Sudbury dyke swarm and its questionable relationship to plate separation; Int. J. Earth Sci. (Geol. Rundsch) 101 3–23.

    Google Scholar 

  • Singh M R, Manikyamba C, Ganguly S, Ray J, Santosh M, Singh D and Kumar C 2017 Paleoproterozoic arc basalt-boninite-high magnesian andesite–Nb enriched basalt association from the Malangtoli volcanic suite, Singhbhum Craton, eastern India: Geochemical record for subduction initiation to arc maturation continuum; J. Asian Earth Sci. 134 191–206.

    Google Scholar 

  • Srivastava R K, Ernst R, Hamilton M A and Bleeker W 2010 Precambrian large igneous provinces (LIPs) and their dyke swarms: New insights from high precision geochronology, paleomagnetism and geochemistry; Precamb. Res. 183(3) i–xi, 379–668.

  • Srivastava R K, Söderlund U, Ernstd R E, Mondal S K, Amiya K and Samala A K 2018 Precambrian mafic dyke swarms in the Singhbhum Craton (eastern India) and their links with dyke swarms of the eastern Dharwar Craton (southern India); Precamb. Res., https://doi.org/10.1016/j.precamres.2018.08.001.

    Google Scholar 

  • Sun S-S and McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes; Geol. Soc. London, Spec. Publ. 42 313–345.

    Google Scholar 

  • Szilas K, Tusch J, Hoffmann J E, Garde A and Munker C 2016 Hafnium isotope constraints on the origin of Mesoarchaean andesites in southern West Greenland, North Atlantic Craton; In: Crust–mantle interactions and granitoid diversification: Insights from archaean cratons (eds) Halla J, Whitehouse M J, Ahmad T and Bagai Z, Geol. Soc. London, Spec. Publ. 449, http://doi.org/10.1144/SP449.2.

    Google Scholar 

  • Thybo H and Artemieva I M 2013 Moho and magmatic underplating in continental lithosphere; Tectonophys. 609 605–619, https://doi.org/10.1016/j.tecto.2013.05.032.

    Article  Google Scholar 

  • Tommasini S, Avanzinelli R and Conticelli S 2011 The Th/La and Sm/La conundrum of the Tethyan realm lamproites; Earth Planet. Sci. Lett. 301 469–478.

    Google Scholar 

  • Upadhyaya D, Chattopadhyaya S, Kooijmanb E, Mezgerc K Jr and Berndtd J 2014 Magmatic and metamorphic history of Paleoarchean tonalite–trondhjemite–granodiorite (TTG) suite from the Singhbhum Craton, Eastern India; Precamb. Res. 252 180–190.

    Google Scholar 

  • Volkert R A, Feigenson M D, Mana S and Bolge L 2015 Geochemical and Sr–Nd isotopic constraints on the mantle source of Neoproterozoic mafic dikes of the rifted eastern Laurentian margin, north-central Appalachians, USA; Lithos 212 202–213.

    Google Scholar 

  • Wang Y, Fan W, Zhang Y, Guo F, Zhang H and Peng T 2004 Geochemical, 40Ar/39Ar geochronological and Sr–Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca.1800 Ma event of the North China Craton; Precamb. Res. 135 55–77.

    Google Scholar 

  • Weaver B L and Tarney J 1981 The Scourie dyke suite: petrogenesis and geochemical nature of the Proterozoic sub-continental mantle; Contrib. Mineral. Petrol. 78 175–188.

    Google Scholar 

  • Weaver B L and Tarney J 1984 Empirical approach to estimating the composition of the continental crust; Nature 310 575–577.

    Google Scholar 

  • Wilson M 1989 Igneous petrogenesis – A global tectonic approach; Harper Collins, London, 466p.

    Google Scholar 

  • Wood D A 1980 The application of a Th–Hf–Ta to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province; Earth Planet. Sci. Lett. 50 11–30.

    Google Scholar 

  • Yaxley G M, Crawford A J and Green D H 1991 Evidence for carbonatite metasomatism in spinel peridotites from western Victoria, Australia; Earth Planet. Sci. Lett. 197 305–317.

    Google Scholar 

  • Zhao J H and Zhou M F 2007 Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle; Precamb. Res. 152 27–47.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology (DST), New Delhi, India for providing the funds to carry out this research work (grant No. SR/WOS-A/ES-22/2012(G), Dated: 23.5.2013). The authors would also like to thank the Head, Department of Geology, Presidency University for providing the infrastructural support. The second author would like to thank Presidency University for providing the FRPDF grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyali Dasgupta.

Additional information

Communicated by N V Chalapathi Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, P., Ray, A. & Chakraborti, T.M. Geochemical characterisation of the Neoarchaean newer dolerite dykes of the Bahalda region, Singhbhum craton, Odisha, India: Implication for petrogenesis. J Earth Syst Sci 128, 216 (2019). https://doi.org/10.1007/s12040-019-1228-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-019-1228-0

Keywords

Navigation