Skip to main content
Log in

Deterministic seismic hazard analysis of north and central Himalayas using region-specific ground motion prediction equations

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

A comprehensive deterministic seismic hazard assessment (DSHA) of the north and central Himalayas (NCH) is attempted in the current study using recently developed strong-motion data-based region-specific ground motion prediction equations (GMPEs). Two source models, linear and point sources are used for hazard assessment. An updated seismotectonic map of the NCH is developed by identifying and merging the seismic sources from the Seismotectonic Atlas (SEISAT 2000) developed by the Geological Survey of India and recent literature, and a homogenized, declustered up-to-date earthquake catalogue with events since 250 BC. The NCH is divided into grids of size approximately 5 km × 5 km, and the bedrock level peak ground acceleration (PGA) at the center of each grid point is estimated using a region-specific GMPE considering both source models. The PGA values estimated at these points are exported to a GIS platform to develop a seismic hazard map of the region, separately for different sources, average and maximum of both the sources. It is observed from the current study that the PGA estimated is apparently greater than what is recommended in the codal provisions for seismic zonation and estimation of design horizontal acceleration for the NCH.

Research highlights

  • SHA based on the state of the art DSHA technique has been carried out using various source models and recently developed region-specific GMPEs with an updated homogenized and declustered catalogue.

  • Deterministic Seismic Hazard contour maps have been developed representing the bedrock level horizontal acceleration developed using linear and point sources.

  • The newly developed hazard maps for the North and Central Himalayas shows higher PGA in the range of 0.4g to 0.7g towards the plate boundary region and a decreasing trend towards the peninsular shield region and the southern alluvial plains, except at the National Capital Region.

  • The PGA estimated are comparatively higher than the design horizontal acceleration prescribed for these regions in BIS 1893.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abrahamson N and Silva W 2008 Summary of the Abrahamson & Silva NGA ground-motion relations; Earthq. Spectra 24 67–97.

    Article  Google Scholar 

  • Akkar S and Bommer J J 2010 Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the middle east; Seismol. Res. Lett. 81 195–206.

    Article  Google Scholar 

  • Anbazhagan P, Vinod J S and Sitharam T G 2009 Probabilistic seismic hazard analysis for Bangalore; Nat. Hazards 48 145–166.

    Article  Google Scholar 

  • Anbazhagan P, Kumar A and Sitharam T G 2013 Ground motion prediction equation considering combined dataset of recorded and simulated ground motions; Soil Dyn. Earthq. Eng. 53 92–108.

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K and Patel S 2015 Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters; Nat. Hazards 78 1163–1195.

    Article  Google Scholar 

  • Anbazhagan P, Bajaj K, Dutta N, Moustafa S S and Al-Arifi N S 2017 Region-specific deterministic and probabilistic seismic hazard analysis of Kanpur city; J. Earth Syst. Sci. 126 12.

    Article  Google Scholar 

  • Anderson J G, Wesnousky S G and Stirling M W 1996 Earthquake size as a function of fault slip rate; Bull. Seismol. Soc. Am. 86 683–690.

    Article  Google Scholar 

  • Baro O, Kumar A and Ismail-Zadeh A 2018 Seismic hazard assessment of the Shillong Plateau, India; Geomat. Nat. Haz. Risk 9 841–861.

    Article  Google Scholar 

  • Beauval C, Yepes H, Palacios P, Segovia M, Alvarado A, Font Y Y, Aguilar J, Troncoso L and Vaca S 2013 An earthquake catalog for seismic hazard assessment in Ecuador; Bull. Seismol. Soc. Am. 103 773–786.

    Article  Google Scholar 

  • Bhatia S C, Kumar M R and Gupta H K 1999 A probabilistic seismic hazard map of India and adjoining regions; Ann. Geofis. 42 1153–1164.

    Google Scholar 

  • Bilham R 2019 Himalayan earthquakes: A review of historical seismicity and early 21st century slip potential; Geol. Soc. London Spec. Publ. 483 423–482.

    Article  Google Scholar 

  • Bilham R, Gaur V K and Molnar P 2001 Himalayan seismic hazard; Science 293 1442–1444.

    Article  Google Scholar 

  • BIS 1893 (2016) Criteria for earthquake resistant design of structures; Bureau of Indian Standards, Part 1.

  • Bollinger L, Tapponnier P, Sapkota S N and Klinger Y 2016 Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake?; Earth Planet. Space 68 12, https://doi.org/10.1186/s40623-016-0389-1.

    Article  Google Scholar 

  • Boore D M and Atkinson G M 2008 Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s; Earthq. Spectra 24 99–138.

    Article  Google Scholar 

  • Budnitz R J, Apostolakis G and Boore D M 1997 Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts (No. NUREG/CR-6372-Vol. 1; UCRL-ID-122160). Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lawrence Livermore National Lab., CA (United States); Electric Power Research Inst., Palo Alto, CA (United States); USDOE, Washington, DC (United States).

  • Burnwal M L, Burman A, Samui P and Maity D 2017 Deterministic strong ground motion study for the Sitamarhi area near Bihar-Nepal region; Nat. Hazards 87 237–254.

    Article  Google Scholar 

  • Campbell K W and Bozorgnia Y 2003 Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra; Bull. Seismol. Soc. Am. 93 314–331.

    Article  Google Scholar 

  • Campbell K W and Bozorgnia Y 2008 NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s; Earthq. Spectra 24 139–171.

    Article  Google Scholar 

  • Campbell K W and Bozorgnia Y 2014 NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra; Earthq. Spectra 30 1087–1115.

    Article  Google Scholar 

  • Cetin K O, Seed R B, Der Kiureghian A, Tokimatsu K, Harder Jr L F, Kayen R E and Moss R E 2004 Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential; J. Geotech. Geoenviron. Eng. 130 1314–1340.

    Article  Google Scholar 

  • Chandler A M, Lam N T K, Wilson J L and Hutchinson G L 2001 Response spectrum for regions lacking earthquake records; eJSE Electron. J. Struct. Eng. 1 60–73.

    Google Scholar 

  • Cornell C A 1968 Engineering seismic risk analysis; Bull. Seismol. Soc. Am. 58 1583–1606.

    Article  Google Scholar 

  • Costa G, Panza G F, Suhadolc P and Vaccari F 1993 Zoning of the Italian territory in terms of expected peak ground acceleration derived from complete synthetic seismograms; J. Appl. Geophys. 30 149–160.

    Article  Google Scholar 

  • Cramer C H 2001 A seismic hazard uncertainty analysis for the New Madrid seismic zone; Eng. Geol. 62 251–266.

    Article  Google Scholar 

  • Das R, Sharma M L and Wason H R 2016 Probabilistic seismic hazard assessment for northeast India region; Pure Appl. Geophys. 173 2653–2670.

    Article  Google Scholar 

  • Decanini L, Mollaioli F, Panza G F, Romanelli F and Vaccari F 2001 Probabilistic vs deterministic evaluation of seismic hazard and damage earthquake scenarios: A general problem, particularly relevant for seismic isolation; Proc. 7th International post-Smirt seminar on seismic isolation, passive energy dissipation and active control of vibration of structures, Assisi, Italy, 2–5 October.

  • Devaraj D, Ramkrishnan R, Prabu T, Kolathayar S and Sitharam T G 2020 Synthesis of linear jtfa based response spectra for structural response and seismic reduction measures for north-east India; J. Earthq. Tsunami, https://doi.org/10.1142/S1793431120500232.

  • Dewey J F and Bird J M 1970 Mountain belts and the new global tectonics; J. Geophys. Res. 75 2625–2647.

    Article  Google Scholar 

  • Duvall M J, Waldron J W, Godin L and Najman Y 2020 Active strike-slip faults and an outer frontal thrust in the Himalayan foreland basin; Proc. Nat. Acad. Sci. USA 117 17615–17621.

    Article  Google Scholar 

  • Field E H, Jackson D D and Dolan J F 1999 A mutually consistent seismic-hazard source model for southern California; Bull. Seismol. Soc. Am. 89 559–578.

    Article  Google Scholar 

  • Frankel A 1995 Mapping seismic hazard in the central and eastern United States; Seismol. Res. Lett. 66 8–21.

    Article  Google Scholar 

  • Gardner J K and Knopoff L 1974 Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?; Bull. Seismol. Soc. Am. 64 1363–1367.

    Article  Google Scholar 

  • Geological Survey of India, Dasgupta S, Narula P L, Acharyya S K and Banerjee J 2000 Seismotectonic atlas of India and its environs; Geological Survey of India.

  • Gupta I D 2010 Response spectral attenuation relations for in-slab earthquakes in Indo-Burmese subduction zone; Soil Dyn. Earthq. Eng. 30 368–377.

    Article  Google Scholar 

  • Gupta H K and Gahalaut V K 2015 Can an earthquake of Mw∼9 occur in the Himalayan region?; Geol. Soc. London, Spec. Publ. 412 43–53.

    Article  Google Scholar 

  • Hamilton W C 1964 Statistics in physical sciences; The Ronald Press Co., New York, 230p.

    Google Scholar 

  • Huang H, Ramkrishnan R, Kolathayar S, Garg A and Yadav J S 2021 Development of region-specific new generation attenuation relations for north India using artificial neural networks; Proc. 1st Indo-China Research Series in Geotechnical and Geoenvironmental Engineering, Springer, Singapore, pp. 85–101.

  • Iyengar R N, Sharma D and Siddiqui J M 1999 Earthquake history of India in medieval times; Indian J. Hist. Sci. 34 181–238.

    Google Scholar 

  • Jade S, Shrungeshwara T S, Kumar K, Choudhury P, Dumka R K and Bhu H 2017 India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015; Sci. Rep. 7 1–16, https://doi.org/10.1038/s41598-017-11697-w.

    Article  Google Scholar 

  • Kanamori H 1977 The energy release in great earthquakes; J. Geophys. Res. 82 2981–2987.

    Article  Google Scholar 

  • Kanth S R and Iyengar R N 2006 Seismic hazard estimation for Mumbai city; Curr. Sci. 9 1486–1494.

    Google Scholar 

  • Kassaras I and Kazantzidou-Firtinidou D 2017 Tectonic hazards: Earthquakes; In: Environmental hazards methodologies for risk assessment and management (ed.) Nicolas R Dalezios, The International Water Association, 378p.

  • Khattri K N 1987 Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary; Tectonophys. 138 79–92.

    Article  Google Scholar 

  • Kijko A 2004 Estimation of the maximum earthquake magnitude, m max; Pure Appl. Geophys. 161 1655–1681.

    Article  Google Scholar 

  • Klügel J U 2005 Challenges to seismic hazard analysis of critical infrastructures; AGU-Meeting, AGUFM 2005: S13C-04, San Francisco.

  • Klügel J U 2007 Comment on “Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates?” by Julian J. Bommer and Norman A. Abrahamson; Bull. Seismol. Soc. Am. 97 2198–2207.

    Article  Google Scholar 

  • Klügel J U, Mualchin L and Panza G F 2006 A scenario-based procedure for seismic risk analysis; Eng. Geol. 88 1–22.

    Article  Google Scholar 

  • Kolathayar S 2012 Comprehensive Seismic Hazard Analysis of India (Doctoral dissertation); Indian Institute of Science, Bangalore, India.

  • Kolathayar S and Sitharam T G 2012 Characterization of regional seismic source zones in and around India; Seismol. Res. Lett. 83 77–85.

    Article  Google Scholar 

  • Kolathayar S and Sitharam T G 2018 Earthquake hazard assessment: India and adjacent regions; CRC press.

  • Kolathayar S, Sitharam T G and Vipin K S 2012 Deterministic seismic hazard macrozonation of India; J. Earth Syst. Sci. 121 1351–1364, https://doi.org/10.1007/s12040-012-0227-1.

    Article  Google Scholar 

  • Kouris L A, Borg R P and Indirli M 2010 The L’Aquila Earthquake, April 6th, 2009: A review of seismic damage mechanisms; Proc. Final Conference of COST Action C26, Urban habitat constructions under catastrophic events Mazzolani, FM, 16–18 September.

  • Krinitzsky E L 2003 How to combine deterministic and probabilistic methods for assessing earthquake hazards; Eng. Geol. 70 157–163.

    Article  Google Scholar 

  • Kumar D, Sriram V, Sarkar I and Teotia S S 2008 An estimate of a scaling law of seismic spectrum for earthquakes in Himalaya; Indian Minerals 61 1–4.

    Google Scholar 

  • Kumar A, Anbazhagan P and Sitharam T G 2013 Seismic hazard analysis of Lucknow considering local and active seismic gaps; Nat. Hazards 69 327–350.

    Article  Google Scholar 

  • Kumar A, Mittal H, Kumar R and Ahluwalia R S 2017 Empirical attenuation relationship for peak ground horizontal acceleration for Northeast Himalaya; Vietnam. J. Earth Sci. 39 46–56.

    Google Scholar 

  • Mahajan A K, Thakur V C, Sharma M L and Chauhan M 2010 Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India; Nat. Hazards 53 443–457.

    Article  Google Scholar 

  • McGuire R K and Arabasz W J 1990 An introduction to probabilistic seismic hazard analysis; Geotech. Environ. Geophys. 1 333–353.

    Article  Google Scholar 

  • Mohanty W K and Walling M Y 2008 Seismic hazard in mega city Kolkata, India; Nat. Hazards 47 39–54.

    Article  Google Scholar 

  • Molnar P and Tapponnier P 1977 The collision between India and Eurasia; Sci. Am. 236 30–41.

    Article  Google Scholar 

  • Mukhopadhyay S, Pandey Y, Dharmaraju R, Chauhan P K S, Singh P and Dev A 2002 Seismic microzonation of Delhi for ground-shaking site effects; Curr. Sci. 82 877–881.

    Google Scholar 

  • Nath S K and Thingbaijam K K S 2012 Probabilistic seismic hazard assessment of India; Seismol. Res. Lett. 83 135–149.

    Article  Google Scholar 

  • Nath S K, Vyas M, Pal I and Sengupta P 2005 A seismic hazard scenario in the Sikkim Himalaya from seismotectonics, spectral amplification, source parameterization, and spectral attenuation laws using strong motion seismometry; J. Geophys. Res.: Solid Earth 110(B1).

  • Nath S K, Raj A, Thingbaijam K K S and Kumar A 2009 Ground motion synthesis and seismic scenario in Guwahati city – A stochastic approach; Seismol. Res. Lett. 80 233–242.

    Article  Google Scholar 

  • Nath S K, Adhikari M D, Maiti S K, Devaraj N, Srivastava N and Mohapatra L D 2014 Earthquake scenario in West Bengal with emphasis on seismic hazard microzonation of the city of Kolkata, India; Nat. Hazards Earth Syst. Sci. 14 2549.

    Article  Google Scholar 

  • NDMA 2010 Development of probabilistic seismic hazard map of India; Technical report by National Disaster Management Authority, Govt. of India. www.ndma.gov.in/images/pdf/Indiapshafinalreport.pdf.

  • Panza G F, Vaccari F and Cazzaro R 1999 Deterministic seismic hazard assessment; In: Vrancea earthquakes: tectonics, hazard and risk mitigation; Springer, Dordrecht, pp. 269–286.

    Chapter  Google Scholar 

  • Parvez I A, Vaccari F and Panza G F 2003 A deterministic seismic hazard map of India and adjacent areas; Geophys. J. Int. 155 489–508.

    Article  Google Scholar 

  • Prakash E L, Kolathayar S and Ramkrishnan R 2018 Seismic risk assessment for Coimbatore integrating seismic hazard and land use; In: Geo-Shanghai International Conference; Springer, Singapore, pp. 117–124.

    Google Scholar 

  • Rajendran K, Parameswaran R M and Rajendran C P 2017 Seismotectonic perspectives on the Himalayan arc and contiguous areas: Inferences from past and recent earthquakes; Earth-Sci. Rev. 173 1–30.

    Article  Google Scholar 

  • Ramkrishnan R, Kolathayar S and Sitharam T G 2018 New attenuation relations for northeast Himalayas; 16th Symposium on Earthq. Eng., IIT Roorkee, India, pp. 1–10.

  • Ramkrishnan R, Kolathayar S and Sitharam T G 2019a Seismic hazard assessment and land use analysis of Mangalore City, Karnataka, India; J. Earthq. Eng., https://doi.org/10.1080/13632469.2019.1608333.

  • Ramkrishnan R, Kolathayar S and Sitharam T G 2019b Development of new ground motion prediction equation for the north and central Himalayas using recorded strong motion data; J. Earthq. Eng., https://doi.org/10.1080/13632469.2019.1605318.

  • Ramkrishnan R, Kolathayar S and Sitharam T G 2020 Strong motion data based regional ground motion prediction equations for northeast India based on non-linear regression models; J. Earthq. Eng., https://doi.org/10.1080/13632469.2020.1778586.

  • Ramkrishnan R, Kolathayar S and Sitharam T G 2021 Probabilistic seismic hazard analysis of North and Central Himalayas using regional ground motion prediction equations; Bull. Eng. Geol. Environ. 1–21, https://doi.org/10.1007/s10064-021-02434-9.

  • Rao K S and Neelima Satyam D 2005 Seismic microzonation studies for Delhi region; In: Symposium on Seismic Hazard Analysis and Microzonation, Vol. 2324.

  • Reasenberg P 1985 Second-order moment of central California seismicity, 1969–1982; J. Geophys. Res: Solid Earth 90 5479–5495.

    Article  Google Scholar 

  • Rout M M, Das J and Das R 2015 Probabilistic seismic hazard assessment of NW and central Himalayas and the adjoining region; J. Earth Syst. Sci. 124 577–586.

    Article  Google Scholar 

  • Sharma M L 1998 Attenuation relationship for estimation of peak ground horizontal acceleration using data from strong-motion arrays in India; Bull. Seismol. Soc. Am. 88 1063–1069.

    Article  Google Scholar 

  • Sharma M L and Bungum H 2006 New strong ground-motion spectral acceleration relations for the Himalayan region; Proc. of the First European Conference on Earthquake Engineering and Seismology, (ECEES) 8.

  • Sharma M L, Wason H R and Dimri R 2003 Seismic zonation of the Delhi region for bedrock ground motion; Pure Appl. Geophys. 160 2381–2398.

    Article  Google Scholar 

  • Sharma M L, Douglas J, Bungum H and Kotadia J 2009 Ground-motion prediction equations based on data from the Himalayan and Zagros regions; J. Earthq. Eng. 13 1191–1210.

    Article  Google Scholar 

  • Sil A, Sitharam T G and Kolathayar S 2013 Probabilistic seismic hazard analysis of Tripura and Mizoram states; Nat. Hazards 68 1089–1108.

    Article  Google Scholar 

  • Singh R P, Aman A and Prasad Y J J 1996 Attenuation relations for strong seismic ground motion in the Himalayan region; Pure Appl. Geophys. 147 161–180.

    Article  Google Scholar 

  • Sitharam T G and Anbazhagan P 2007 Seismic hazard analysis for the Bangalore region; Nat. Hazards 40 261–278.

    Article  Google Scholar 

  • Sitharam T G and Anbazhagan P 2008 Seismic microzonation: Principles, practices and experiments; EJGE Spec. Vol. Bouquet 8 61.

    Google Scholar 

  • Sitharam T G and Kolathayar S 2013 Seismic hazard analysis of India using areal sources; J. Asian Earth Sci. 62 647–653.

    Article  Google Scholar 

  • Sokolov V and Ismail-Zadeh A 2015 Seismic hazard from instrumentally recorded, historical and simulated earthquakes: Application to the Tibet-Himalayan region; Tectonophys. 657 187–204.

    Article  Google Scholar 

  • Stein R S and Hanks T C 1998 M≧ 6 earthquakes in southern California during the twentieth century: No evidence for a seismicity or moment deficit; Bull. Seismol. Soc. Am. 88 635–652.

    Article  Google Scholar 

  • Stepp J C 1972 Analysis of completeness of the earthquake sample in the Puget sound area and its effect on statistical estimates of earthquake hazard; In: Proc. 1st Int. Conf. on Microzonazion, Seattle 2 897–910.

  • Tandon A N 1956 Zones of India liable to earthquake damage; Indian J. Meteorol. Geophys. 10 137–146.

    Google Scholar 

  • Uhrhammer R A 1986 Characteristics of northern and central California seismicity; Earthq. Notes 57 21.

    Google Scholar 

  • USNRC (United States Nuclear Regulatory Commission) Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts, No. NUREG/CR-6372-VOL. 2, Nuclear Regulatory Commission 1997.

  • Vipin K S and Sitharam T G 2011 Multiple source and attenuation relationships for evaluation of deterministic seismic hazard: Logic tree approach considering local site effects; Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 5 173–185.

  • Vipin K S, Anbazhagan P and Sitharam T G 2009 Estimation of peak ground acceleration and spectral acceleration for south India with local site effects: Probabilistic approach; Nat. Hazards Earth Syst. Sci. 9 865.

    Article  Google Scholar 

  • Vipin K S, Sitharam T G and Kolathayar S 2013 Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches; Nat. Hazards 65 1179–1195.

    Article  Google Scholar 

  • Wang Z 2011 Seismic hazard assessment: Issues and alternatives; Pure Appl. Geophys. 168 11–25.

    Article  Google Scholar 

  • Wiemer S and Wyss M 1994 Seismic quiescence before the landers (M = 7.5) and big bear (M = 6.5) 1992 earthquakes; Bull. Seismol. Soc. Am. 84 900–916.

    Google Scholar 

Download references

Acknowledgement

The authors would like to sincerely thank the editor and the anonymous reviewers who helped in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R Ramkrishnan carried out the data collection, analysis and draft manuscript preparation. K Sreevalsa and T G Sitharam envisioned and guided the work, contributed to the methodology and interpretation of the results.

Corresponding author

Correspondence to R Ramkrishnan.

Additional information

Communicated by Anand Joshi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramkrishnan, R., Kolathayar, S. & Sitharam, T.G. Deterministic seismic hazard analysis of north and central Himalayas using region-specific ground motion prediction equations. J Earth Syst Sci 130, 232 (2021). https://doi.org/10.1007/s12040-021-01728-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-021-01728-6

Keywords

Navigation