Skip to main content
Log in

Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level?

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Kernel dimensions (KD) contribute greatly to thousand-kernel weight (TKW) in wheat. In the present study, quantitative trait loci (QTL) for TKW, kernel length (KL), kernel width (KW) and kernel diameter ratio (KDR) were detected by both conditional and unconditional QTL mapping methods. Two related F8:9 recombinant inbred line (RIL) populations, comprising 485 and 229 lines, respectively, were used in this study, and the trait phenotypes were evaluated in four environments. Unconditional QTL mapping analysis detected 77 additive QTL for four traits in two populations. Of these, 24 QTL were verified in at least three trials, and five of them were major QTL, thus being of great value for marker assisted selection in breeding programmes. Conditional QTL mapping analysis, compared with unconditional QTL mapping analysis, resulted in reduction in the number of QTL for TKW due to the elimination of TKW variations caused by its conditional traits; based on which we first dissected genetic control system involved in the synthetic process between TKW and KD at an individual QTL level. Results indicated that, at the QTL level, KW had the strongest influence on TKW, followed by KL, and KDR had the lowest level contribution to TKW. In addition, the present study proved that it is not all-inclusive to determine genetic relationships of a pairwise QTL for two related/causal traits based on whether they were co-located. Thus, conditional QTL mapping method should be used to evaluate possible genetic relationships of two related/causal traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammiraju J. S. S., Dholakia B. B., Santra D. K., Singh H., Lagu M. D., Tamhankar S. A. et al. 2001 Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor. Appl. Genet. 102, 726–732.

    Article  CAS  Google Scholar 

  • Araki E., Miura H. and Sawada S. 1999 Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor. Appl. Genet. 98, 977–984.

    Article  CAS  Google Scholar 

  • Beavis W. B. 1998 QTL analyses: power, precision, and accuracy. In Molecular dissection of complex traits (ed. A. H. Patterson). CRC Press, Boca Raton, USA.

    Google Scholar 

  • Bernardo R. 2004 What proportion of declared QTL in plants are false? Theor. Appl. Genet. 109, 410–424.

    Article  Google Scholar 

  • Böner A., Schumann E., Fürste A., Cöter H., Leithold B., Röder M. S. and Weber W. E. 2002 Mapping of quantitative trait locus determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105, 921–936.

    Article  Google Scholar 

  • Breseghello F. and Sorrells M. E. 2006 Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.). Cultivars Genet. 172, 1165–1177.

    Article  Google Scholar 

  • Breseghello F. and Sorrells M. E. 2007 QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res. 101, 172–179.

    Article  Google Scholar 

  • Buckler E. S., Holland J. B., Acharya C. B., Brown P. J., Browne C., Ersoz E. et al. 2009 The Genetic architecture of maize flowering time. Science 325, 714–718.

    Article  PubMed  CAS  Google Scholar 

  • Campbell K. G., Bergmem C. J., Gualberto D. G., Anderson J. A., Giroux M. J., Hareland G. et al. 1999 Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci. 39, 1184–1195.

    Article  CAS  Google Scholar 

  • Campbell B. T., Baenziger P. S., Gill K. S., Eskridge K. M., Budak H., Erayman M. et al. 2003 Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci. 43, 1493–1505.

    Article  CAS  Google Scholar 

  • Cui F., Li J., Ding A. M., Zhao C. H., Wang L., Wang X. Q. et al. 2011 Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor. Appl. Genet. 122, 1517–1536.

    Article  PubMed  Google Scholar 

  • Dholakia B. B., Ammiraju J. S. S., Singh H., Lagu M. D., Rörder M. S., Rao V. S. et al. 2003 Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed. 122, 392– 395.

    Article  CAS  Google Scholar 

  • Doerge R. W. 2002 Multifactorial genetics: mapping and analysis of quantitative trait locus in experimental populations. Nat. Rev. 3, 43–52.

    CAS  Google Scholar 

  • Gao L. F., Jing R. L., Huo N. X., Li Y., Li X. P., Zhou R. H. et al. 2004 One hundred and one new microsatellite loci derived from ESTs (EST-SSR) in bread wheat. Theor. Appl. Genet. 108, 1392–1400.

    Article  PubMed  CAS  Google Scholar 

  • Gegas V. C., Nazari A., Griffiths S., Simmonds J., Fish L., Orford S. et al. 2010 A genetic framework for grain size and shape variation in wheat. The Plant Cell 22, 1046–1056.

    Article  PubMed  CAS  Google Scholar 

  • Giura A. and Saulescu N. N. 1996 Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89, 77–80.

    Article  Google Scholar 

  • Golabadi M., Arzani A., Mirmohammadi Maibody S. A. M., Sayed Tabatabaei B. E. and Mohammadi S. A. 2010 Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica 177, 207–221.

    Article  Google Scholar 

  • Groos C., Robert N., Bervas E. and Charmet G. 2003 Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106, 1032– 1040.

    PubMed  CAS  Google Scholar 

  • Guo L. B., Xing Y. Z., Mei H. W., Xu C. G., Shi C. H., Wu P. et al. 2005 Dissection of component QTL expression in yield formation in rice. Plant Breed. 124, 127–132.

    Article  CAS  Google Scholar 

  • Hai L., Guo H. J., Wagner C. and Xiao S. H. 2008 Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci. 175, 226–232.

    Article  CAS  Google Scholar 

  • Halloran G. M. 1976 Genetic analysis of hexaploid wheat, Triticum aestivum, using intervarietal chromosome substitution lines- protein content and grain weight. Euphytica 25, 65– 71.

    Article  Google Scholar 

  • Hao Y. F., Liu A. F., Wang Y. H., Feng D. S., Gao J. R., Li X. F. et al. 2008 Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor. Appl. Genet. 117, 1205–1212.

    Article  PubMed  CAS  Google Scholar 

  • Huang X. Q., Cöster H., Ganal M. W. and Röder M. S. 2003 Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. 106, 1379–1389.

    PubMed  CAS  Google Scholar 

  • Huang X. Q., Kempf H., Ganal M. W. and Röder M. S. 2004 Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theor. Appl. Genet. 109, 933–943.

    Article  PubMed  CAS  Google Scholar 

  • Huang X. Q., Cloutier S., Lycar L., Radovanovic N., Humphreys D. G., Noll J. S. et al. 2006 Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor. Appl. Genet. 113, 753–766.

    Article  PubMed  CAS  Google Scholar 

  • Kato K., Miura H. and Sawada S. 2000 Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor. Appl. Genet. 101, 1114–1121.

    Article  CAS  Google Scholar 

  • Kirigwi F. M., Ginkel M. V., Brown-Guedira G., Gill B. S., Paulsen G. M. and Fritz A. K. 2007 Markers associated with a QTL for grain yield in wheat under drought. Mol. Breed. 20, 401– 413.

    Article  CAS  Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distances from recombination values. Annu. Eugen. 12, 172–175.

    Article  Google Scholar 

  • Kumar N., Kulwal P. L., Balyan H. S. and Gupta P. K. 2007 QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol. Breed. 19, 163–177.

    Article  Google Scholar 

  • Lander E. S. and Botstein D. 1989 Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199.

    PubMed  CAS  Google Scholar 

  • Lander E. S., Green P., Abrahamson J., Barlow A., Daly M. J., Lincoln S. E. et al. 1987 MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Li S. S., Jia J. Z., Wei X. Y., Zhang X. C., Li L. Z., Chen H. M. et al. 2007 A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol. Breed. 20, 167–178.

    Article  Google Scholar 

  • Li Y. L., Dong Y. B., Cui D. Q., Wang Y. Z., Liu Y. Y., Wei M. G. et al. 2008 The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica 162, 345–351

    Article  Google Scholar 

  • Liang D., Tang J. W., Peña R. J., Singh R., He X. Y., Shen X. Y. et al. 2010 Characterization of CIMMYT bread wheats for high and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172, 235–250.

    Article  CAS  Google Scholar 

  • Liu G. F., Yang J., Xu H. M., Hayat Y. and Zhu J. 2008a Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.). Aust. J. Agric. Res. 59, 189–195.

    Article  CAS  Google Scholar 

  • Liu S. X., Chao S. M. and Anderson J. A. 2008b New DNA markers for high molecular weight glutenin subunits in wheat. Theor. Appl. Genet. 118, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Ma Z. Q., Zhao D. M., Zhang C. Q., Zhang Z. Z., Xue S. L., Lin F. et al. 2007 Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol. Gen. Genomics 277, 31–42.

    Article  CAS  Google Scholar 

  • Mackay T. F. C. 2001 The genetic architecture of quantitative traits. Annu. Rev. Genet. 35, 303–339.

    Article  PubMed  CAS  Google Scholar 

  • McCartney C. A., Somers D. J., Humphreys D. G., Lukow O., Ames N., Noll J. et al. 2005 Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC Domain’. Genome 48, 870–883.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre C. L., Mathews K. L., Rattey A., Chapman S. C., Drenth J., Ghaderi M. et al. 2010 Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120, 527–541.

    Article  PubMed  CAS  Google Scholar 

  • Mei Y. J., Ye Z. H. and Xu Z. 2007 Genetic impacts of fiber sugar content on fiber characters in Sea Island cotton, Gossypium barbadense L. Euphytica 154, 29–39.

    Article  CAS  Google Scholar 

  • Mullan D. J., Platteter A., Teakle N. L., Appels R., Colmer T. D., Anderson J. M. et al. 2005 EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48, 811–822.

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T. and Ogihara Y. 1997 Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94, 597–602.

    Article  CAS  Google Scholar 

  • Peng J. H. and Lapitan N. L. V. 2005 Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct. Integr. Genomics 5, 80–96.

    Article  PubMed  CAS  Google Scholar 

  • Ramya P., Chaubal A., Kulkarni K., Gupta L., Kadoo N., Dhaliwal H. S. et al. 2010 QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J. Appl. Genet. 51, 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Röder M. S., Korzun V., Wendehake K., Plaschke J., Tixier M. H., Leroy P. et al. 1998 A microsatellite map of wheat. Genetics 149, 2007–2023.

    PubMed  Google Scholar 

  • Röder M. S., Huang X. Q. and Börner A. 2008 Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct. Integr. Genomics 8, 79–86.

    Article  PubMed  Google Scholar 

  • Schön C. C., Utz H. F., Groh S., Truberg B., Openshaw S. and Melchinger A. E. 2004 Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167, 485–498.

    Article  PubMed  Google Scholar 

  • Shah M. M., Gill K. S., Baenziger P. S., Yen Y., Kaeppler S. M. and Ariyarathne H. M. 1999 Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci. 39, 1728–1732.

    Article  CAS  Google Scholar 

  • Singh N. K. and Shepherd K. W. 1991 A simplified SDS-PAGE procedure for separation LMW subunits of glutenin. J. Cereal. Sci. 14, 203–208.

    Article  Google Scholar 

  • Su Z. Q., Hao C. Y., Wang L. F., Dong Y. C. and Zhang X. Y. 2010 Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 122, 211–223.

    Article  PubMed  Google Scholar 

  • Suenaga K., Khairallah M., William H. M. and Hoisington D. A. 2005 A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 48, 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Sun X. Y., Wu K., Zhao Y., Kong F. M., Han G. Z., Jiang H. M. et al. 2009 QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165, 615–624.

    Article  CAS  Google Scholar 

  • Tsilo T. J., Hareland G. A., Simsek S., Chao S. and Anderson J. A. 2010 Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor. Appl. Genet. 121, 717–730.

    Article  PubMed  CAS  Google Scholar 

  • Uga Y., Siangliw M., Nagamine T., Ohsama R., Fujimura T. and Fukuta Y. 2010 Comparative mapping of QTL determining glume, pistil and stamen sizes in cultivated rice (Oryza sativa L.). Plant Breed. 129, 657–669.

    Article  CAS  Google Scholar 

  • Vales M. I., Schön C. C., Capettini F., Chen X. M., Corey A. E., Mather D. E. et al. 2005 Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor. Appl. Genet. 111, 1260–1270.

    Article  PubMed  CAS  Google Scholar 

  • Varshney R. K., Prasad M., Roy J. K., Kumar N., Harjit-Singh, Dhaliwal H. S. et al. 2000 Identification of eight chromosomes and a microsatellite marker on 1AS associated with QTLs for grain weight in bread wheat. Theor. Appl. Genet. 100, 1290–1294.

    Article  CAS  Google Scholar 

  • Verma V., Worland A. J., Sayers E. J., Fish L., Calligari P. D. S. and Snape J. W. 2005 Identification and characterization of quantitative trait loci related to lodging resistance and associated traits in bread wheat. Plant Breed. 124, 234–241.

    Article  CAS  Google Scholar 

  • Wang R. X., Hai L., Zhang X. Y., You G. X., Yan C. S. and Xiao S. H. 2009 QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor. Appl. Genet. 118, 313–325.

    Article  PubMed  CAS  Google Scholar 

  • Wen Y. X. and Zhu J. 2005 Multivariable conditional analysis for complex trait and its components. Acta. Genet. Sin. 32, 289–296.

    PubMed  Google Scholar 

  • Ye Z. H., Wang J., Liu Q., Zhang M. Z., Zou K. Q. and Fu X. S. 2009 Genetic relationships among panicle characteristics of rice (Oryza sativa L.) using unconditional and conditional QTL analyses. J. Plant Biol. 52, 259–267.

    Article  CAS  Google Scholar 

  • Zanetti S., Winzeler M., Feuillet C., Keller B. and Messmer M. 2001 Genetic analysis of bread-making quality in wheat and spelt. Plant Breed. 120, 13–19.

    Article  CAS  Google Scholar 

  • Zhao J. Y., Becker H. C., Zhang D. Q., Zhang Y. F. and Ecke W. G. 2006 Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor. Appl. Genet. 113, 33–38.

    Article  PubMed  CAS  Google Scholar 

  • Zhao C. H., Cui F., Zong H., Wang Y. H., Bao Y. G., Hao Y. F. et al. 2009 Transmission of the chromosome 1R in winter wheat germplasm Aimengniu and its derivatives revealed by molecular markers. Agric. Sci. Chin. 8, 652–657.

    Article  CAS  Google Scholar 

  • Zheng B. S., Gouis J. L., Leflon M., Rong W. Y., Laperche A. and Brancourt-Hulmel M. 2010 Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor. Appl. Genet. 121, 1501–1517.

    Article  PubMed  Google Scholar 

  • Zhu J. 1992 Mixed model approaches for estimating genetic variance and covariance. J. Biomath. 7, 1–11.

    Google Scholar 

  • Zhu J. 1995 Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141, 1633–1639.

    PubMed  CAS  Google Scholar 

  • Zou F., Gelfond J. A. L., Airey D. C., Lu L., Manly K. F., Williams R. W. et al. 2005 Quantitative trait locus analysis using recombinant inbred intercross (RIX): theoretical and empirical onsiderations. Genetics 170, 1299–1311.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HONGGANG WANG.

Additional information

Fa Cui, Anming Ding, Jun Li and Chunhua Zhao contributed equally to this work.

Cui F., Ding A., Li J., Zhao C., Li X., Feng D., Wang X., Wang L., Gao J. and Wang H. 2011 Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level? J. Genet. 90, xx–xx

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 509 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

CUI, F., DING, A., LI, J. et al. Wheat kernel dimensions: how do they contribute to kernel weight at an individual QTL level? . J Genet 90, 409–425 (2011). https://doi.org/10.1007/s12041-011-0103-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-011-0103-9

Keywords

Navigation