Skip to main content
Log in

The effect of functional compensation among duplicate genes can constrain their evolutionary divergence

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Gene duplicates have the inherent property of initially being functionally redundant. This means that they can compensate for the effect of deleterious variation occurring at one or more sister sites. Here, I present data bearing on evolutionary theory that illustrates the manner in which any functional adaptation in duplicate genes is markedly constrained because of the compensatory utility provided by a sustained genetic redundancy. Specifically, a two-locus epistatic model of paralogous genes was simulated to investigate the degree of purifying selection imposed, and whether this would serve to impede any possible biochemical innovation. Three population sizes were considered to see if, as expected, there was a significant difference in any selection for robustness. Interestingly, physical linkage between tandem duplicates was actually found to increase the probability of any neofunctionalization and the efficacy of selection, contrary to what is expected in the case of singleton genes. The results indicate that an evolutionary trade-off often exists between any functional change under either positive or relaxed selection and the need to compensate for failures due to degenerative mutations, thereby guaranteeing the reliability of protein production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu M. K., Carmel L., Rogozin I. B. and Koonin E. 2008 Evolution of protein domain promiscuity in eukaryotes. Genome Res. 18, 449–461.

    Article  PubMed  CAS  Google Scholar 

  • Bozorgmehr J. E. H. 2011 An ancient frame-shifting event in the highly conserved KPNA gene family has undergone extensive compensation by natural selection in vertebrates. Biosystems 105, 210–215.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield J. F. 2003 Gene duplications: the gradual evolution of functional divergence. Curr. Biol. 13, 229–230.

    Article  Google Scholar 

  • Caterina J. J., Ciavatta D. J., Donze D., Behringer R. R. and Townes T. M. 1994 Multiple elements in human beta-globin locus control region 50 HS 2 are involved in enhancer activity and position-independent, transgene expression. Nucleic Acids Res. 22, 1006–1011.

    Article  PubMed  CAS  Google Scholar 

  • Clark A. G. 1994 Invasion and maintenance of a gene duplication. Proc. Natl. Acad. Sci. USA 91, 2950–2954.

    Article  PubMed  CAS  Google Scholar 

  • Comeron J. M., Williford A. and Kliman R. M. 2008 The Hill-Robertson effect: evolutionary consequences of weak selection and linkage in finite populations. Heredity 100, 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Conant G. C. and Wagner A. 2004 Duplicate genes and robustness to transient gene knock-downs in Caenorhabditis elegans. Proc. Biol. Sci. 271, 89–96.

    Article  PubMed  Google Scholar 

  • Dean E. J., Davis J. C., Davis R. W. and Petrov D. A. 2008 Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genet. 4, e1000113.

    Article  Google Scholar 

  • Ding W., Lin L., Chen B. and Dai J. 2006 L1 elements, processed pseudogenes and retrogenes in mammalian genomes. IUBMB Life 58, 677–685.

    Article  PubMed  CAS  Google Scholar 

  • Edger P. P. and Pires J. C. 2009 Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Res. 17, 699–717.

    Article  PubMed  CAS  Google Scholar 

  • Evans B. J., Chain F. J. and Ilieva D. 2008 Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization. BMC Evol. Biol. 8, 43.

    Article  PubMed  Google Scholar 

  • Goodstadt L. and Ponting C. P. 2006 Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. PLoS Comput. Biol. 2, e133.

    Article  Google Scholar 

  • Greer J. M., Puetz J., Thomas K. R. and Capecchi M. R. 2000 Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665.

    Article  PubMed  CAS  Google Scholar 

  • Gu Z., Steinmetz L. M., Gu X., Scharfe C., Davis R. W. and Li W. H. 2003 Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Guan Y., Dunham M. J. and Troyanskaya O. G. 2007 Functional analysis of gene duplications in Saccharomyces cerevisiae. Genetics 175, 933–943.

    Article  PubMed  CAS  Google Scholar 

  • Hanada K., Kuromori T., Myouga F., Toyoda T., Li W. H. and Shinozaki K. 2009 Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis. Genome Biol. Evol. 1, 409–414.

    Article  PubMed  Google Scholar 

  • Hannay K., Marcotte E. M. and Vogel C. 2008 Buffering by gene duplicates: an analysis of molecular correlates and evolutionary conservation. BMC Genomics 9, 609.

    Article  PubMed  Google Scholar 

  • He X. and Zhang J. 2006 Transcriptional reprogramming and backup between duplicate genes: is it a genomewide phenomenon? Genetics 172, 1363–1367.

    Article  PubMed  Google Scholar 

  • Hsiao T. L. and Vitkup D. 2008 Role of duplicate genes in robustness against deleterious human mutations. PLoS Genet. 4, e1000014.

    Article  Google Scholar 

  • Hughes T., Ekman D., Ardawatia H., Elofsson A. and Liberles D. A. 2007 Evaluating dosage compensation as a cause of duplicate gene retention in Paramecium tetraurelia. Genome Biol. 8, 213.

    Article  PubMed  Google Scholar 

  • Jordan I., Wolf Y. and Koonin E. 2004 Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol. Biol. 4, 22.

    Article  PubMed  Google Scholar 

  • Kafri R., Levy M. and Pilpel Y. 2006 The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl. Acad. Sci. USA 103, 11653–11658.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. 1962 On the probability of fixation of mutant genes in a population. Genetics 47, 713–719.

    PubMed  CAS  Google Scholar 

  • Lenski R. E., Barrick J. E. and Ofria C. 2006 Balancing robustness and evolvability. PLoS Biol. 4, e428.

    Article  Google Scholar 

  • Li J., Yuan Z. and Zhang Z. 2010 The cellular robustness by genetic redundancy in budding yeast. PLoS Genet. 6, e1001187.

    Article  Google Scholar 

  • Liang H. and Li W. H. 2009 Functional compensation by duplicated genes in mouse. Trends Genet. 25, 441–442.

    Article  PubMed  Google Scholar 

  • Long M., Zhang J., Yang H., Li L. and Dean A. M. 2010 Evolution of enzymatic activities of testis-specific short-chain dehydrogenase/reductase in Drosophila. J. Mol. Evol. 71, 241–249.

    Article  PubMed  Google Scholar 

  • Lynch M. and Conery J. 2000 The evolutionary fate and consequences of duplicate genes. Science 290, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  • Lynch M., O’Hely M., Walsh B. and Force A. 2001 The probability of preservation of a newly arisen gene duplicate. Genetics 159, 1789–1804.

    PubMed  CAS  Google Scholar 

  • Maltsev N., Glass E. M., Ovchinnikova G. and Gu Z. 2005 Molecular mechanisms involved in robustness of yeast central metabolism against null mutations. J. Biochem. 137, 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Negoro S., Ohki T., Shibata N., Mizuno N., Wakitani Y., Tsurukame J. et al. 2005 X-ray crystallographic analysis of 6-aminohexanoate-dimer hydrolase: molecular basis for the birth of a nylon oligomer-degrading enzyme. J. Biol. Chem. 280, 39644–39652.

    Article  PubMed  CAS  Google Scholar 

  • Ohta T. 2000 Evolution of gene families. Gene 259, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Patwa Z. and Wahl L. M. 2008 The fixation probability of beneficial mutations. J. R. Soc. Interface 5, 1279–1289.

    Article  PubMed  CAS  Google Scholar 

  • Roth C., Rastogi S., Arvestad L., Dittmar K., Light S., Ekman D. and Liberles D. A. 2006 Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J. Exp. Zool. B. Mol. Dev. Evol. 308, 58–73.

    Google Scholar 

  • Saitou N., Ezawa K. and Oota S. 2006 Genome-wide search of gene conversions in duplicated genes of mouse and rat. Mol. Biol. Evol. 23, 927–940.

    Article  PubMed  Google Scholar 

  • Shastry B. S. 1995 Overexpression of genes in health and sickness. A bird’s eye view. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 112, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Skipper M. 2003 Compensation or innovation? Nat. Rev. Genet. 4, 80.

    Article  CAS  Google Scholar 

  • Storz J. F. 2009 Gene duplication and the resolution of adaptive conflict. Heredity 102, 99–100.

    Article  PubMed  CAS  Google Scholar 

  • Taverna D. M. and Goldstein R. M. 2000 The evolution of duplicated genes considering protein stability constraints. Pac. Sym. Comput. Biol. 69–80.

  • Tawfik D. S., Aharoni A., Gaidukov L., Khersonsky O., McQ Gould S. and Roodveldt C. 2005 The ‘evolvability’ of promiscuous protein functions. Nat. Genet. 37, 73–76.

    PubMed  Google Scholar 

  • Teichmann S. A. and Babu M. M. 2004 Gene regulatory network growth by duplication. Nat. Genet. 36, 492–496.

    Article  PubMed  CAS  Google Scholar 

  • Vavouri T., Semple J. I. and Lehner B. 2008 Widespread conservation of genetic redundancy during a billion years of eukaryotic evolution. Trends Genet. 24, 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Wagner A. 1999 Redundant gene functions and natural selection. J. Evol. Biol. 12, 1–16.

    Article  Google Scholar 

  • Wagner A. 2001 Birth and death of duplicated genes in completely sequenced eukaryotes. Trends Genet. 17, 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Wagner A. 2002 Selection and gene duplication: a view from the genome. Genome Biol. 3, 1012.1–1012.3

    Article  Google Scholar 

  • Wagner A. 2005 Energy constraints on the evolution of gene expression. Mol. Biol. Evol. 22, 1365–1374.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J. 2003 Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298.

    Article  Google Scholar 

  • Ziha K. 2000 Redundancy and robustness of systems of events. Probabilistic engineering mechanics 15, 347–357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JOSEPH ESFANDIAR HANNON BOZORGMEHR.

Additional information

[Bozorgmehr J. E. H. 2012 The effect of functional compensation among duplicate genes can constrain their evolutionary divergence. J. Genet. 91, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Cite this article

BOZORGMEHR, J.E.H. The effect of functional compensation among duplicate genes can constrain their evolutionary divergence. J Genet 91, 1–8 (2012). https://doi.org/10.1007/s12041-012-0125-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0125-y

Keywords

Navigation