Skip to main content
Log in

Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Time to flowering in the winter growth habit bread wheat is dependent on vernalization (exposure to cold conditions) and exposure to long days (photoperiod). Dominant Vrn-1 (Vrn-A1, Vrn-B1 and Vrn-D1) alleles are associated with vernalization-independent spring growth habit. The semidominant Ppd-D1a mutation confers photoperiod-insensitivity or rapid flowering in wheat under short day and long day conditions. The objective of this study was to reveal the nature of interaction between Vrn-1 and Ppd-D1a mutations (active alleles of the respective genes vrn-1 and Ppd-D1b). Twelve Indian spring wheat cultivars and the spring wheat landrace Chinese Spring were characterized for their flowering times by seeding them every month for five years under natural field conditions in New Delhi. Near isogenic Vrn-1 Ppd-D1 and Vrn-1 Ppd-D1a lines constructed in two genetic backgrounds were also phenotyped for flowering time by seeding in two different seasons. The wheat lines of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1a, Vrn-A1a Vrn-B1 Ppd-D1a and Vrn-A1a Vrn-D1 Ppd-D1a (or Vrn-1 Ppd-D1a) genotypes flowered several weeks earlier than that of Vrn-A1a Vrn-B1 Vrn-D1 Ppd-D1b, Vrn-A1b Ppd-D1b and Vrn-D1 Ppd-D1b (or Vrn-1 Ppd-D1b) genotypes. The flowering time phenotypes of the isogenic vernalization-insensitive lines confirmed that Ppd-D1a hastened flowering by several weeks. It was concluded that complementary interaction between Vrn-1 and Ppd-D1a active alleles imparted super/very-early flowering habit to spring wheats. The early and late flowering wheat varieties showed differences in flowering time between short day and long day conditions. The flowering time in Vrn-1 Ppd-D1a genotypes was hastened by higher temperatures under long day conditions. The ambient air temperature and photoperiod parameters for flowering in spring wheat were estimated at 25°C and 12 h, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard V., Veisz O., Koṡzegi B., Rousset M., Le Gouis J. and Martre P. 2012 The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. J. Exp. Bot. 63, 847–857.

    Article  PubMed  CAS  Google Scholar 

  • Asseng S., Foster I. and Turner N. C. 2011 The impact of temperature variability on wheat yields. Global Change Biol. 17, 997–1012.

    Article  Google Scholar 

  • Baga M., Fowler D. B. and Chibbar R. N. 2009 Identification of genomic regions determining the phenological development leading to floral transition in wheat (Triticum aestivum L.). J. Exp. Bot. 60, 3575–3585.

    Article  PubMed  CAS  Google Scholar 

  • Barnabas B., Jager K., and Feher A. 2008 The effect of draught and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38.

    PubMed  CAS  Google Scholar 

  • Beales J., Turner A., Griffiths S., Snape J. W. and Laurie D. A. 2007 A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721–733.

    Article  PubMed  CAS  Google Scholar 

  • Bentley A. R., Turner A. S., Gosman N., Leigh F. J., Maccaferri M., Dreisigacker S. et al. 2011 Frequency of photoperiod-insensitive Ppd-A1a alleles in tetraploid, hexaploid and synthetic hexaploid wheat germplasm. Plant Breed. 130, 10–15.

    Article  CAS  Google Scholar 

  • Bespalova L. A., Koshkin V. A., Potokina E. K., Filobok V. A., Matvienko I. I., Mitrofanova O. P. and Guenkova E. A. 2010 Photoperiod sensitivity and molecular marking of genes Ppd and Vrn in connection with breeding alternative-habit wheat varieties. Russ. Agric. Sci. 36, 389–392.

    Article  Google Scholar 

  • Bonnin I., Rousset M., Madur D., Sourdille P., Dupuits C., Brunel D. and Goldringer I. 2008 FT genome A and D polymorphisms are associated with the variation of earliness components. Theor. Appl. Genet. 116, 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Borlaug N. E. 1983 Contributions of conventional plant breeding to food production. Science 219, 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Cochram J., Jones H., Leigh F. J., Sullivan D. O., Powell W., Laurie D. A. and Greenland A. J. 2007 Control of flowering time in temperate cereals: genes, domestication and sustainable productivity. J. Exp. Bot. 58, 1231–1244.

    Article  Google Scholar 

  • Colasanti J. and Coneva V. 2009 Mechanisms of floral induction in grasses: something borrowed something new. Plant Physiol. 149, 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Danyluk J., Kane N. A., Bveton G., Limin A. E., Fowler D. B. and Sarhan F. 2003 Ta VRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132, 1849–1860.

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A., Li C. and Dubcovsky J. 2009 Regulation of flowering in temperate cereals. Curr. Opin. Plant Biol. 12, 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J. and Dvorak J. 2007 Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862–1866.

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J., Loukoianov A., Fu D., Valarik M., Sanchez A. and Yan L. 2006 Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol. Biol. 60, 469–480.

    Article  PubMed  CAS  Google Scholar 

  • Dyck J. A., Matus-Cádiz M. A., Hucl P., Talbert L., Hunt T., Dubuc J. P. et al. 2004 Agronomic performance of hard red spring wheat isolines sensitive and insensitive to photoperiod. Crop Sci. 44, 1976–1981.

    Article  Google Scholar 

  • Eagles H. A., Cane K. and Vallance N. 2009 The flow of alleles of important photoperiod and vernalisation genes through Australian wheat. Crop Pasture Sci. 60, 646–657.

    Article  CAS  Google Scholar 

  • Eagles H. A., Cane K., Kuchel H., Hollanby G. J., Vallance V., Eastwood R. F. et al. 2010 Photoperiod and vernalization gene effects in southern Australian wheat. Crop Pasture Sci. 61, 721–730.

    Article  Google Scholar 

  • Flood R. G. and Halloran G. M. 1984 The nature and duration of gene action for vernalization response in wheat. Ann. Bot. 53, 363–368.

    Google Scholar 

  • Fu D., Szucs P., Yan L., Helguera M., Skinner J. S., von Zitzewitz J. et al. 2005 Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol. Gen. Genomics 273, 54–65.

    Article  CAS  Google Scholar 

  • Goncharov N. P. 2004 Response to vernalization in wheat: its quantitative or qualitative nature. Cereal Res. Commun. 32, 323–330.

    CAS  Google Scholar 

  • Gonzalez F. G., Slafer C. A. and Miralles D. J. 2005 Pre-anthesis development and number of fertile florets in wheat as affected by photoperiod sensitivity genes Ppd-D1 and Ppd-B1. Euphytica 146, 253–269.

    Article  Google Scholar 

  • Greenup A., Peacock W. J., Dennis E. S. and Trevaskis B. 2009 The molecular biology of seasonal flowering-responses in Arabidopsis and cereals. Ann. Bot. 103, 1165–1172.

    Article  PubMed  CAS  Google Scholar 

  • Guo Z., Song Y., Zhou R., Ren Z. and Jia J. 2010 Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol. 185, 841–851.

    Article  PubMed  CAS  Google Scholar 

  • Hanocq E., Laperche A., Jaminon O., Laine A. L. and Legouis J. 2007 Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor. Appl. Genet. 114, 569–584.

    Article  PubMed  CAS  Google Scholar 

  • Hoogendoorn J. 1985 A reciprocal F1 monosomic analysis of the genetic control of time of ear emergence, number of leaves and number of spikelets in wheat (Triticum aestivum L.). Euphytica 34, 545–558.

    Article  Google Scholar 

  • Iqbal M., Navabi A., Salmon D. F., Yang R.-C., Murdoch B. M., Moore S. S. and Spaner D. 2007a Genetic analysis of flowering and maturity time in high latitude spring wheat. Euphytica 154, 207–218.

    Article  CAS  Google Scholar 

  • Iqbal M., Navabi A., Yang R.-C., Salmon D. F. and Spaner D. 2007b Molecular characterization of vernalization response genes in Canadian spring wheat. Genome 50, 511–516.

    Article  PubMed  CAS  Google Scholar 

  • Jung C. and Muller A. E. 2009 Flowering time control and applications in plant breeding. Trends Plant Sci. 14, 563–573.

    Article  PubMed  CAS  Google Scholar 

  • Kato K. and Yokoyama H. 1992 Geographical variation in heading characters among wheat landraces, Triticum aestivum L. and its implication for their adaptability. Theor. Appl. Genet. 84, 259–265.

    Article  Google Scholar 

  • Kato K. and Wada T. 1999 Genetic analysis and selection experiment for narrow-sense earliness in wheat by using segregating hybrid progenies. Breed. Sci. 49, 233–238.

    Article  Google Scholar 

  • Kirby E. J. M. and Appleyard M. 1987 Cereal development guide, pp. 85. NAC Cereal Unit. Stoneleigh, Kenilworth, UK.

  • Kumar S. 2009 A method of tandem cropping for increased production of food grain crops. WO/2009/104203, Patent application no. PCT/IN 2008/000567 dated 4.9.2008.

  • Kumar S., Sharma V., Chaudhary S., Kumar A. and Kumari R. 2012 Agronomic characteristics of autum and winter seeded photoperiod in sensitive spring wheat in agro-climate of north-west India. Proc. Ind. Natl. Sci. Acad. 78, 71–89.

    Google Scholar 

  • Li C. and Dubcovsky J. 2008 Wheat FT protein regulates VRN1 transcription through interactions with FDL2. Plant J. 55, 543–554.

    Article  PubMed  CAS  Google Scholar 

  • Loukoianov A., Yan L., Blechl A., Sanchez A. and Dubcovsky J. 2005 Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol. 138, 2364– 2373.

    Article  PubMed  CAS  Google Scholar 

  • Mathews K. L., Chapman S. C., Trethowan R., Pfeiffer W., van Ginkel M., Crossa J. C. et al. 2007 Global adaptation patterns of Australian and CIMMYT spring bread wheat. Theor. Appl. Genet. 115, 819–835.

    Article  PubMed  Google Scholar 

  • Mohler V., Lukman R., Oritz-Islas S., William M., Worland A. J., Van Beem J. and Wenzel G. 2004 Genetic and physiological mapping of photoperiod insensitive gene Ppd-B1 in common wheat. Euphytica 138, 33–40.

    Article  CAS  Google Scholar 

  • Oliver S. N., Finnegan E. J., Dennis E. S., Peacock W. J. and Trevaskis B. 2009 Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION 1 gene. Proc. Natl. Acad. Sci. USA 106, 8386–8391.

    Article  PubMed  CAS  Google Scholar 

  • Paterson C. J., Allan R. E. and Paterson C. J. 2000 US Pacific northwest region. In The world wheat book: a history of wheat breeding (ed. A. P. Bonjean and W. J. Angus), pp. 407–429. Lavoisier Publishing, Paris.

  • Pancholi S. R., Sharma S. N., Sharma Y. and Maloo S. R. 2010 Screening of bread wheat (Triticum aestivum L. em. Thell.) genotypes under heat stress. Indian J. Genet. 70, 189–193.

    Google Scholar 

  • Pidal B., Yan L., Fu D., Zhang F., Tranquilli E. and Dubcovsky J. 2009 The CArg-box in the promoter region of wheat vernalization gene VRN1 is not necessary to mediate the vernalization response. J. Hered. 100, 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Preston J. C. and Kellog E. A. 2008 Discrete developmental roles for temperate cereal grass VERNALIZATION/FRUITFUL- libe genes in flowering competency and transition to flowering. Plant Physiol. 146, 265–276.

    Article  PubMed  CAS  Google Scholar 

  • Pugsley A. T. 1971 A genetic analysis of the spring-winter habit of growth in wheat. Aust. J. Agric. Res. 22, 21–31.

    Article  Google Scholar 

  • Rhone B., Remoue C., Galic N., Goldringer I. and Bonnin I. 2008 Insight into the genetic basis of climatic adaptation in experimentally evolving wheat populations. Mol. Ecol. 17, 930–943.

    Article  PubMed  CAS  Google Scholar 

  • Roberts E. H., Summerfleld R. J., Muehlbauer F. J. and Short R. W. 1986 Flowering in lentil (Lens culinaris Medic.): the duration of the photoperiod inductive phase as a function of accumulated daylength above the critical photoperiod. Ann. Bot. 58, 235–248.

    Google Scholar 

  • Rousset M., Bonnin I., Remoue C., Falque M., Rhone B., Veyrieras J.-B. et al. 2011 Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 123, 907–926.

    Article  PubMed  Google Scholar 

  • Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A. and Allard R. W. 1984 Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014–8018.

    Article  PubMed  CAS  Google Scholar 

  • Sherman J. D., Yan L., Talbert L. and Dubcovsky J. 2004 A PCR marker for growth habit in common wheat base on allelic at the Vm-A1 gene. Crop Sci. 44, 1832–1838.

    Article  CAS  Google Scholar 

  • Shimada S., Ogawa T., Kitagawa S., Suzuki T., Ikari C., Shitsukawa N. et al. 2009 A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1, is upstream of FLOWERING LOCUS T. Plant J. 58, 668–681.

    Article  PubMed  CAS  Google Scholar 

  • Shitsukawa N., Iqari C., Shimada S., Kitagawa S., Sakamoto K., Saito H. et al. 2007 The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet. Syst. 82, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Snape J. W., Sarma R., Quarrie S. A., Fish L., Galiba G. and Sutka J. 2001 Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica 120, 309–315.

    Article  CAS  Google Scholar 

  • Stelmakh A. F. 1993 Genetic effect of Vrn genes on heading date and agronomic traits in bread wheat. Euphytica 65, 53–60.

    Article  Google Scholar 

  • Stelmakh A. F. 1998 Genetic systems regulating flowering response in wheat. Euphytica 100, 359–369.

    Article  Google Scholar 

  • Trevaskis B. 2010 The central role of the VERNALIZATION1 gene in the vernalization of cereals. Funct. Plant Biol. 37, 479– 487.

    Article  CAS  Google Scholar 

  • Trevaskis B., Bagnall D. J., Ellis M. H., Peacock W. J. and Dennis E. S. 2003 MADS box genes control vernalization induced flowering in cereals. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  Google Scholar 

  • Trevaskis B., Hemming M. N., Peacock W. J. and Dennis E. S. 2007 The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci. 12, 352–357.

    Article  PubMed  CAS  Google Scholar 

  • White J. W., Herndl M., Hunt L. A., Payne T. S. and Hoogenboom G. 2008 Simulation-based analysis of effects of Vrn and Ppd loci on flowering in wheat. Crop Sci. 48, 678–687.

    Article  Google Scholar 

  • Winfield M. O., Lu C., Wilson I. D., Coghil J. A. and Edwards K. J. 2009 Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol. 9, 55.

    Article  PubMed  Google Scholar 

  • Worland A. J., Borner A., Korzun V., Li W. M., Petrovic S. and Sayers E. J. 1998 The influence of photoperiod genes to the adaptability of European winter wheats. Euphytica 100, 385– 394.

    Article  CAS  Google Scholar 

  • Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T. and Dubcovsky J. 2003 Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100, 6263–6268.

    Article  PubMed  CAS  Google Scholar 

  • Yan L., Helguera M., Kato K., Fukuyama S., Sherman J. and Dubcovsky J. 2004 Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor. Appl. Genet. 109, 1677–1686.

    Article  PubMed  CAS  Google Scholar 

  • Yan L., Fu D., Li C., Blechl A., Tranquilli G., Bonafede M. et al. 2006 The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. USA 103, 19581– 19586.

    Article  PubMed  CAS  Google Scholar 

  • Yang F. P., Zhang X. K., Xia X. C., Laurie D. A., Yang W. X. and He Z. H. 2009 Distribution of photoperiod insensitive Ppd-D1a allele in chinese wheat cultivars. Euphytica 165, 445–452.

    Article  CAS  Google Scholar 

  • Yoshida T., Nishida H., Zhu J., Nitcher R., Distelfeld A., Akashi Y. et al. 2010 Vrn-D4 is a vernalization gene located on the centrometric region of chromosome 5D in hexaploid wheat. Theor. Appl. Genet. 120, 543–552.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X. K., Xiao Y. G., Zhang Y., Xia X. C., Dubcovsky J. and He Z. H. 2008 Allelic variation at the vernalization genes Vrn-A1, Vrn-B1, Vrn-D1 and Vrn-B3 in Chinese wheat cultivars and their association with growth habit. Crop Sci. 48, 458–470.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

[Kumar S., Sharma V., Chaudhary S., Tyagi A., Mishra P., Priyadarshini A. and Singh A. 2012 Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat. J. Genet. 91, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUMAR, S., SHARMA, V., CHAUDHARY, S. et al. Genetics of flowering time in bread wheat Triticum aestivum: complementary interaction between vernalization-insensitive and photoperiod-insensitive mutations imparts very early flowering habit to spring wheat. J Genet 91, 33–47 (2012). https://doi.org/10.1007/s12041-012-0149-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0149-3

Keywords

Navigation