Skip to main content
Log in

Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Improved Catharanthus roseus cultivars are required for high yields of vinblastine, vindoline and catharanthine and/or serpentine and ajmalicine, the pharmaceutical terpenoid indole alkaloids. An approach to derive them is to map QTL for terpenoid indole alkaloids yields, identify DNA markers tightly linked to the QTL and apply marker assisted selection. Towards the end, 197 recombinant inbred lines from a cross were grown over two seasons to characterize variability for seven biomass and 23 terpenoid indole alkaloids content-traits and yield-traits. The recombinant inbred lines were genotyped for 178 DNA markers which formed a framework genetic map of eight linkage groups (LG), spanning 1786.5 cM, with 10.0 cM average intermarker distance. Estimates of correlations between traits allowed selection of seven relatively more important traits for terpenoid indole alkaloids yields. QTL analysis was performed on them using single marker (regression) analysis, simple interval mapping and composite interval mapping procedures. A total of 20 QTL were detected on five of eight LG, 10 for five traits on LG1, five for four traits on LG2, three for one trait on LG3 and one each for different traits on LG three and four. QTL for the same or different traits were found clustered on three LG. Co-location of two QTL for biomass traits was in accord of correlation between them. The QTL were validated for use in marker assisted selection by the recombinant inbred line which transgressively expressed 16 traits contributory to the yield vinblastine, vindoline and catharanthine from leaves and roots that possessed favourable alleles of 13 relevant QTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcantara J., Bird D. A., Franceschi V. R. and Facchini P. J. 2005 Sanguinarine biosynthesis is associated with the endoplasmic reticulum in cultured opium poppy cells after elicitor treatment. Plant Physiol. 138, 173–183.

    Article  PubMed  CAS  Google Scholar 

  • Barleben L., Panjikar S., Ruppert M., Koepke J. and Stöckigt J. 2007 Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell 19, 2886–2897.

    Article  PubMed  CAS  Google Scholar 

  • Bird D. A. and Facchini P. J. 2001 Berberine bridge enzyme, a key branch-point enzyme in bezylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta 213, 888–897.

    Article  PubMed  CAS  Google Scholar 

  • Bock A., Wanner G. and Zenk M. H. 2002 Immunocytological localization of two enzymes involved in berberine biosynthesis. Planta 216, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Burlat V., Oudin A., Courtois M., Rideau M. and St-Pierre B. 2004 Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J. 38, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Campos-Tamayo F., Hernández-Domínguez E. and Vázquez-Flota F. 2008 Vindoline formation in shoot cultures of Catharanthus roseus is synchronously activated with morphogenesis through the last biosynthetic step. Ann. Bot. 102, 409–415.

    Article  PubMed  CAS  Google Scholar 

  • Canel C., Lopes-Cardoso I., Whitmer S., van der Fits L., Pasquali G., van der Heijden R. et al. 1998 Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205, 414–419.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary S., Sharma V., Prasad M., Bhatia S., Tripathi B. N., Yadav G. and Kumar S. 2011 Characterization and genetic linkage mapping of the horticulturally important mutation leafless inflorescence (lli) in periwinkle Catharanthus roseus. Sci. Hort. 129, 142–153.

    Article  CAS  Google Scholar 

  • Chockalingam S., Sundari M. S. N. and Thenmozhi S. 1989 Impact of the extract of Catharanthus roseus on feeding and enzymatic digestive activities of Spodoptera litura. J. Environ. Biol. 10, 303–307.

    Google Scholar 

  • Churchill G. A. and Doerge R. W. 1994 Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    PubMed  CAS  Google Scholar 

  • Costa M. M. R., Hilliou F., Duarte P., Pereira L. G., Almeida I., Leech M. et al. 2008 Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiol. 146, 403–417.

    Article  PubMed  CAS  Google Scholar 

  • Dekkers J. C. M. and Hospital F. 2002 The use of molecular genetics in the improvement of agricultural populations. Nat. Rev. Genet. 3, 22–32.

    Article  PubMed  CAS  Google Scholar 

  • De Luca and St-Pierre B. 2000 The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci. 5, 168–173.

    Article  PubMed  Google Scholar 

  • Deorge R. W. and Churchill G. A. 1996 Permutation test for multiple loci affecting a quantitative character. Genetics 142, 285–294.

    Google Scholar 

  • El-Sayed M. and Verpoorte R. 2007 Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem. Rev. 6, 277–305.

    Article  CAS  Google Scholar 

  • Facchini P. J. and St-Pierre B. 2005 Synthesis and trafficking of biosynthetic enzymes. Curr. Opin. Plant Biol. 8, 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Facchini P. J. and De Luca V. 2008 Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J. 54, 763–784.

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A., Hallard D., Martínez-Caballero A., Lopes-Cardoso I., van der Heijden R. and Verpoorte R. 1999 Alkaloid production by a Cinchona officinalis ‘Ledgeriana’ hairy root culture containing constitutive expression constructs for tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Rep. 19, 191–196.

    Article  CAS  Google Scholar 

  • Gerasimenko I., Sheludko Y., Ma X. Y. and Stockigt J. 2002 Heterologous expression of a Rauvolfia cDNA encoding strictosidine glucosidase, a biosynthetic key to over 2000 monoterpenoid indole alkaloids. Eur. J. Biochem. 269, 2204-2213.

    Article  PubMed  CAS  Google Scholar 

  • Gidding C. E. M., Kellie S. J., Kamps W. A., and de Graff S. S. N. 1999 Vincristine revisited. Crit. Rev. Oncol. Hematol. 29, 267–287.

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G., Burlat V., Oudin A., Lanoue A., St-Pierre B. and Courdavault V. 2009 Optimization of the transient transformation of Catharanthus roseus cells by particle bombardment and its application to the subcellular localization of hydroxymethylbutenyl 4-diphosphate synthase and geraniol 10-hydroxylase. Plant Cell Rep. 28, 1215–1234.

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G., Courdavault V., Lanoue A., Mahroug S., Guihur A., Blanc N. et al. 2010a Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”? BMC Plant Biol. 10, 182–201.

    PubMed  Google Scholar 

  • Guirimand G., Courdavault V., St-Pierre B. and Burlat V. 2010b Biosynthesis and regulation of alkaloids. In Plant developmental biology-biotechnological perspectives, vol 2 (ed. E.-C. Pua and M. R. Dowey). Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Guirimand G., Guihur A., Ginis O., Poutrain P., Héricourt F., Oudin A. et al. 2011a The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J. 278, 749–763.

    Article  PubMed  CAS  Google Scholar 

  • Guirimand G., Guihur A., Poutrain P., Héricourt F., Mahroug S., St-Pierre B. et al. 2011b Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. J. Plant Physiol. 168, 549–557.

    Article  PubMed  CAS  Google Scholar 

  • Hedhili S., Courdavault V., Giglioli-Guivarc’h N. and Gantet P. 2007 Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem. Rev. 6, 341–351.

    Article  CAS  Google Scholar 

  • Hong S. B., Peeble C. A. M., Shanks J. V., San K. Y. and Gibson S. I. 2006 Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J. Biotechnol. 122, 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Irmler S., Schröder G., St-Pierre G., Crouch N. P., Hotze M., Schmidt J. et al. 2000 Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 24, 797–804.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa H., Colby D. A. and Boger D. L. 2008 Direct coupling of catharanthine and vindoline to provide vinblastine: total synthesis of (+)- and ent-(-)-vinblastine. J. Am. Chem. Soc. 130, 420.

    Article  PubMed  CAS  Google Scholar 

  • Kruczynsky A. and Hill B. T. 2001 Vinflunine, the latest Vinca alkaloid in clinical development. A review of its preclinical anticancer properties. Crit. Rev. Oncol. Hematol. 40, 159–173.

    Article  Google Scholar 

  • Kuboyama T., Yokoshima S., Tokuyama H. and Fukuyama T. 2004 Stereocontrolled total synthesis of (+)- vincristine. Proc. Nat. Acad. Sci. USA 101, 11966–11970.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni R. N., Baskaran K., Chandrashekhara R. S. and Kumar S. 1999 Inheritance of morphological traits of periwinkle mutants with modified contents and yields of leaf and root alkaloids. Plant Breed. 118, 71–74.

    Article  CAS  Google Scholar 

  • Kumar S., Rai S. P., Rai S. K., Singh D. V., Srivastava S., Mishra R. K. 2007 Plant variety of Catharanthus roseus named ‘lli’. United States Patent PP18315.

  • Kutchan T. M. 2005 A role for intra- and intercellular translocation in natural product biosynthesis. Curr. Opin. Plant. Biol. 8, 292–300.

    Article  PubMed  CAS  Google Scholar 

  • Langlois N., Gueritte F., Langlois Y. and Potier P. 1976 Application of a modification of the Polonovski reaction to the syntheisis of vinblastine type alkaloids. J. Am. Soc. 98, 7017–7024.

    Article  CAS  Google Scholar 

  • Levac D., Murata J., Kim W. S. and De Luca V. 2008 Application of carborundum abrasion for investigating the leaf epidermis: molecular cloning of Catharanthus roseus 16-hydroxytabersonine-16-O-methyltransferase. Plant J. 53, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Leveque D., Wihlm J. and Jehl F. 1996 Pharmacology of Catharanthus roseus alkaloids. Bull. Cancer 83, 176-187.

    PubMed  CAS  Google Scholar 

  • Lorz H. and Wenzel G. 2005 Molecular marker systems in plant breeding and crop improvement. Springer 476.

  • Luijendijk T. J. C., van der Meijden E. and Verpoorte R. 1996 Involvement of strictosidine as a defensive chemical in Catharanthus roseus. J. Chem. Ecol. 22, 1355–1366.

    Article  CAS  Google Scholar 

  • Mahroug S., Courdavault V., Thiersault M., St-Pierre B. and Burlat V. 2006 Epidermis is a pivotal site of atleast four secondary metabolic pathways in Catharanthus roseus aerial organs. Planta 223, 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  • Mahroug S., Burlat V. and St-Pierre B. 2007 Cellular and sub-cellular organization of the monoterpenoid indole alkaloid pathaway in Catharanthus roseus. Phytochem. Rev. 6, 363–381.

    Article  CAS  Google Scholar 

  • McKnight T. D., Bergey D. R., Burnett R. J. and Nessler C. L. 1991 Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. Planta 185, 148–152.

    Article  CAS  Google Scholar 

  • Meisner J., Weissenberg M., Palevitch D. and Aharonson N. 1981 Phagodeterrency induced by leaves and leaf extracts of Catharanthus roseus in the larva of Spodoptera littoralis (Lepidoptera, Noctuidae). J. Econ. Entomol. 74, 131–135.

    Google Scholar 

  • Mishra P., Uniyal G. C., Sharma S. and Kumar S. 2001 Pattern of diversity for morphological and yield related traits among the periwinkle Catharanthus roseus accessions collected from in and around Indian subcontinent. Genet. Res. Crop Evol. 48, 273–286.

    Article  Google Scholar 

  • Moreno P. R. H., Van der Heijden R. and Verpoorte R. 1995 Cell and tissue cultures of Catharanthus roseus: a literature survey II. Updating from 1988 to 1993. Plant Cell Tissue Organ Cult. 42, 1–25.

    Article  Google Scholar 

  • Murata J. and De Luca V. 2005 Localization of tabersonine-16- hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J. 44, 581–594.

    Article  PubMed  CAS  Google Scholar 

  • Murata J., Roepke J., Gordon H. and De Luca V. 2008 The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20, 524–542.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor S. E. and Maresh J. J. 2006 Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 23, 532–547.

    Article  PubMed  Google Scholar 

  • Oudin A., Courtois M., Rideau M. and Clastre M. 2007 The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem. Res. 6, 259–276.

    Article  CAS  Google Scholar 

  • Ouwerkerk P. B. F and Memelink J. 1999 Elicitor-responsive promoter regions in the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol. Biol. 39, 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Pandey-Rai S., Luthra R. and Kumar S. 2003 Salt-tolerant mutants in glycophytic salinity response (GSR) genes in Catharanthus roseus. Theor. Appl. Genet. 106, 221–230.

    Google Scholar 

  • Papon N., Bremer J., Vansiri A., Andreu F., Rideau M. and Creche J. 2005 Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med. 71, 572–574.

    Article  PubMed  CAS  Google Scholar 

  • Pasquali G., Porto D. D. and Fett-Neto A. G. 2006 Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J. Biosci. Bioeng. 101, 287– 296.

    Article  PubMed  CAS  Google Scholar 

  • Pasquier E. and Kavallaris M. 2008 Microtubules: a dynamic target in cancer therapy. IUBMB Life 60, 165–170.

    Article  PubMed  CAS  Google Scholar 

  • Peebles C. M., Hong S.-B., Gibson S. I., Shanks J. V. and Sa K.-Y. 2006 The effect of terpenoid precursor feeding on Catharanthus roseus hairy root over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Biotech. Bioeng. 93, 534–540.

    Article  CAS  Google Scholar 

  • Potier P. 1980 Is the modified Polonovski reaction biometric? In Indole and biogenetically related alkaloids (J. D. Philipson and M. H. Zenk), pp. 159–169. Academic, London, UK.

    Google Scholar 

  • Rischer H., Oresic M., Seppanen-Laakso T., Katajamaa M., Lammertyn F., Ardiles-Diaz W., Van Montagu M. C. et al. 2006 Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc. Natl. Acad. Sci. USA 103, 5614–5619.

    Article  PubMed  CAS  Google Scholar 

  • Roepke J., Salim V., Wu M., Thamm A. M., Murata J., Ploss K. et al. 2010 Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proc. Natl. Acad. Sci. USA 107, 15287–15292.

    Article  PubMed  CAS  Google Scholar 

  • Roytrakul S. and Verpoorte R. 2007 Role of vacuolar transporter proteins in plant secondary metabolism: Catharanthus roseus cell culture. Phytochem. Rev. 6, 383–396

    Article  CAS  Google Scholar 

  • Samanani N., Alcantara J., Bourgault R., Zulak K. G. and Facchini P. J. 2006 The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant J. 47, 547–563.

    Article  PubMed  CAS  Google Scholar 

  • Schmeller T. and Wink M. 1998 Utilization of alkaloid in modern medicine. In Alkaloids: biochemistry, ecology and medicinal applications, (ed. M. F. Robert and M. Wink), pp. 435–458. Plenum Press, New York, USA.

    Google Scholar 

  • Sevon N. and Oksman-Caldentey K.-M. 2002 Agrobacterium rhizogenes- mediated transformation: root cultures as a source of alkaloids. Planta Med. 68, 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Shokeen B., Sethy N. R., Kumar S. and Bhatia S. 2007 Isolation and characterization of microsatellites for analysis of molecular variation in medicinal plant Madagascar periwinkle Catharanthus roseus (L.) G. Don. Plant Sci. 172, 441–451.

    Article  CAS  Google Scholar 

  • Shukla A. K., Shasany A. K, Gupta M. M. and Khanuja S. P. S. 2006 Transcriptome analysis in Catharanthus roseus leaves and roots for comparative terpenoid indole alkaloid profiles. J. Exp. Bot. 57, 3921–3932.

    Article  PubMed  CAS  Google Scholar 

  • Singh D. V., Pandey-Rai S., Srivastava S., Rai S. K., Mishra R. K. and Kumar S. 2004 Simultaneous quantification of some pharmaceutical Catharanthus roseus leaf and root terpenoid indole alkaloids and their precursors in single runs by reversed-phase liquid chromatography. JAOAC Int. 87, 1287–1296.

    Google Scholar 

  • Singh D. V., Rai S. K., Pandey-Rai S., Srivastava S., Mishra R. K., Chaudhary S. et al. 2008 Predominance of the serpentine route in monoterpenoid indole alkaloid pathway of Catharanthus roseus. Proc. Ind. Natl. Sci. Acad. USA 74, 97–109.

    CAS  Google Scholar 

  • Tam A., Gotoh H., Robertson W. M. and Boger D. L. 2010 Catharanthine C16 substituent effects on the biomimetic coupling with vindoline: preparation and evaluation of a key series of vinblastine analogues. Bioorg. Medicinal. Chem. Lett. 20, 6408–6410.

    Article  CAS  Google Scholar 

  • Tellingen O. V., Beijnen J. H., Nooijen W. J. and Bult A. 1993 Plasma pharmacokinetics of vinblastine and the investigational Vinca alkaloid N-(Deacetyl-O-4-vinblastoyl-23)-1-ethyl isoleucinate in mice as determined by High-performance Liquid Chromatography. Cancer Res. 53, 2061–2065.

    PubMed  Google Scholar 

  • Van der Fits L. and Memelink J. 2001 The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J. 25, 43–53.

    Article  PubMed  Google Scholar 

  • van der Heijden R., Jacobs D. I., Snoeirjer W., Hallard D. and Verpoorte R. 2004 The Catharanthus roseus alkaloids: pharmacognosy and biotechnology. Curr. Med. Chem. 11, 607–628.

    Article  Google Scholar 

  • Verma P., Mathur A. K., Srivastava A. and Mathur A. 2011 Emerging trends in research on spatial and temporal organization of terpenoid indole alkaloid pathway in Catharanthus roseus: a literature update. Protoplasma 249, 255–268.

    Article  PubMed  Google Scholar 

  • Wang L., Zhang Y., He H. P., Zhang Q., Li S. F. and Hao X. J. 2011a Three new terpenoid indole alkaloids from Catharanthus roseus. Planta Med. 77, 754–758.

    Article  PubMed  CAS  Google Scholar 

  • Wang S. C., Basten C. J. and Zeng Z. B. 2011b Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh.

    Google Scholar 

  • Whitmer S., van der Heijden R. and Verpoorte R. 2002 Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J. Biotechnol. 96, 193–203.

    Article  PubMed  CAS  Google Scholar 

  • Whitmer S., Canel C., van der Heijden R. and Verpoorte R. 2003 Longterm instability of alkaloid production by stably transformed cell lines of Catharanthus roseus. Plant Cell Tissue Organ Cult. 74, 73–80.

    Article  CAS  Google Scholar 

  • Yokoshima S., Ueda T., Kobayashi S., Sato A., Kuboyama T., Tokuyama H. and Fukuyama T. 2002 Sterocontrolled total synthesis of (+)- vinblastine. J. Am. Chem. Soc. 124, 2137–2139.

    Article  PubMed  CAS  Google Scholar 

  • Ziegler J. and Facchini P. J. 2008 Alkaloid biosynthesis: metabolism and trafficking. Annu. Rev. Plant Biol. 59, 735–769.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUSHIL KUMAR.

Additional information

Sharma V., Chaudhary S., Srivastava S., Pandey R. and Kumar S. 2012 Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J. Genet. 91, xx–xx

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHARMA, V., CHAUDHARY, S., SRIVASTAVA, S. et al. Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus . J Genet 91, 49–69 (2012). https://doi.org/10.1007/s12041-012-0150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0150-x

Keywords

Navigation