Skip to main content
Log in

DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Drought, high salinity and low temperature are major abiotic stresses that influence survival, productivity and geographical distribution of many important crops across the globe. Plants respond to these environmental challenges via physiological, cellular and molecular processes, which results in adjusted metabolic and structural alterations. The dehydration-responsive-element-binding (DREB) protein / C-repeat binding factors (CBFs) belong to APETALA2 (AP2) family transcription factors that bind to DRE/CRT cis-element and regulate the expression of stress-responsive genes. DREB1/CBF genes, therefore, play an important role in increasing stress tolerance in plants and their deployment using transgenic technology seems to be a potential alternative in management of abiotic stresses in crop plants. This review is mainly focussed on the structural characteristics as well as transcriptional regulation of gene expression in response to various abiotic stresses, with particular emphasis on the role of DREB1/CBF regulon in stress-responsive gene expression. The recent progress related to genetic engineering of DREB1/CBF transcription factors in various crops and model plants is also summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Achard P., Gong F., Cheminant S., Alioua M., Hedden P. and Genschik P. 2008 The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20, 2117–2129.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal P. K., Agarwal P., Reddy M. K. and Sopory S. K. 2006 Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25, 1263–1274.

    Article  PubMed  CAS  Google Scholar 

  • Allen M. D., Yamasaki K., Ohme-Takagi M., Tateno M. and Suzuki M. 1998 A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17, 5484–5496.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P., Devi M. J., Reddy D. S., Lavanya M., Vadez V., Serraj R. K. et al. 2007 Stress-inducible expression of AtDREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep. 26, 2071–2082.

    Article  PubMed  CAS  Google Scholar 

  • Burke E. J., Brown S. J. and Christidis N. 2006 Modelling the recent evolution of global drought and projections for the twenty-first century with the hadley centre climate model. J. Hydrometeor. 7, 1113–1125.

    Article  Google Scholar 

  • Century K., Reuber T. L. and Ratcliffe O. J. 2008 Regulating the regulators: the future prospects for transcription-factor-based agricultural biotechnology products. Plant Physiol. 147, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Chen J. Q., Meng X. P., Zhang Y., Xia M. and Wang X. P. 2008 Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol. Lett. 30, 2191–2198.

    Article  PubMed  Google Scholar 

  • Chen J. R., Lu J. J., Liu R., Xiong X. Y., Wang T. X., Chen S. Y. et al. 2010 DREB1C from Medicago truncatula enhances freezing tolerance in transgenic M. truncatula and China Rose (Rosa chinensis Jacq.). Plant Growth Regul. 60, 199–211.

    Article  CAS  Google Scholar 

  • Chen M., Wang Q. Y., Cheng X. G., Xu Z. S., Li L. C., Ye X. G. et al. 2007 GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 353, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Chen W. and Zhu T. 2004 Networks of transcription factors with roles in environmental stress response. Trends Plant Sci. 9, 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V., Ohta M., Kanrar S., Lee B. H., Hong X., Agarwal M. and Zhu J. K. 2003 ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes. Dev. 17, 1043–1054.

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V., Schumaker K. and Zhu J. K. 2004 Molecular genetic perspectives on cross-talk and specifcity in abiotic stress signalling in plants. J. Exp. Bot. 55, 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W., Rodriguez E. M. and Close T. J. 2002 Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol. 129, 1781–1787.

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet J. G., Sakuma Y., Ito Y., Kasuga M., Dubouzet E. G., Miura S. et al. 2003 OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J. 33, 751–763.

    Article  PubMed  CAS  Google Scholar 

  • Dutta A., Sen J. and Deswal R. 2007 Down regulation of terpenoid indole alkaloid biosynthetic pathway by low temperature and cloning of a AP2 type C-repeat binding factor (CBF) from Catharanthus roseus (L). G. Don. Plant Cell Rep. 26, 1869–1878.

    Article  PubMed  CAS  Google Scholar 

  • F.A.O. 2004 FAO production yearbook. Food and Agriculture Organization of the United Nations, Rome.

  • Fowler S. and Thomashow F. 2002 Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675–1690.

    Article  PubMed  CAS  Google Scholar 

  • Gao F., Chen J. M., Xiong A. S., Peng R. H., Liu J. G., Cai B. and Yao Q. H. 2009 Isolation and characterization of a novel AP2/EREBP-type transcription factor OsAP211 in Oryza sativa. Biol. Plant. 53, 643–649.

    Article  CAS  Google Scholar 

  • Gilmour S. J., Sebolt A. M., Salazar M. P., Everard J. D. and Thomashow M. F. 2000 Over-expression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124, 1854–1865.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour S. J., Zarka D. G., Stockinger E. J., Salazar M. P., Houghton J. M. and Thomashow M. F. 1998 Low temperature regulation of Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 16, 433–442.

    Article  PubMed  CAS  Google Scholar 

  • Gutha L. R. and Reddy A. R. 2008 Rice DREB1B promoter shows distinct stress-specific responses, and the over-expression of cDNA in tobacco confers improved abiotic and biotic stress tolerance. Plant Mol. Biol. 68, 533–555.

    Article  PubMed  CAS  Google Scholar 

  • Heidarvand L. and Amiri R. M. 2010 What happens in plant molecular responses to cold stress. Acta Physiol. Plant 32, 419–431.

    Article  CAS  Google Scholar 

  • Hsieh T. H., Lee J. T., Charng Y. Y. and Chan M. T. 2002a Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 130, 618–626.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh T. S., Lee J. T., Yang P. T., Chiu L. H., Chang Y. Y., Wang Y. C. and Chan M. T. 2002b Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 129, 1086–1094.

    Article  PubMed  CAS  Google Scholar 

  • Ito Y., Katsura K., Maruyama K., Taji T., Kobayashi M., Seki M. et al. 2006 Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant. Cell. Physiol. 47, 141–153.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo K. R., Kleff S., Amundsen K. L., Zhang X., Haake V., Zhang J. Z. et al. 2001 Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold response pathway are conserved in Brassica napus and other plant species. Plant Physiol. 127, 910–917.

    Article  PubMed  CAS  Google Scholar 

  • Jaglo-Ottosen K. R., Gilmour S. J., Zarka D. G., Schabenberger O. and Thomashow M. F. 1998 Arabidopsis CBF1 over-expression induces COR genes and enhances freezing tolerance. Science 280, 104–106.

    Article  PubMed  CAS  Google Scholar 

  • James V. A., Neibaur I. and Altpeter F. 2008 Stress inducible expression of the DREB1A transcription factor from xeric, Hordeum spontaneum L. in turf and forage grass (Paspalum notatum Flugge) enhances abiotic stress tolerance. Transgenic Res. 17, 93–104.

    Article  PubMed  CAS  Google Scholar 

  • Jiang F., Wang F., Wu Z., Li Y., Shi G., Hu J. and Hou X. 2011 Components of the Arabidopsis CBF cold-response pathway are conserved in non-heading chinese cabbage. Plant Mol. Biol. Rep. 29, 525–532.

    Article  CAS  Google Scholar 

  • Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K. and Shinozaki K. 1999 Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat. Biotechnol. 17, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Lata C. and Prasad M. 2011 Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot. 62, 4731–4748.

    Article  PubMed  CAS  Google Scholar 

  • Lee H., Xiong L., Gong Z., Ishitani M., Stevenson B. and Zhu J. K. 2001 The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning. Genes Dev. 15, 912–924.

    Article  PubMed  CAS  Google Scholar 

  • Li X., Cheng X., Liu J., Zeng H., Han L. and Tang W. 2011 Heterologous expression of the Arabidopsis DREB1A/CBF3 gene enhances drought and freezing tolerance in transgenic Lolium perenne plants. Plant Biotechnol. Rep. 5, 61–69.

    Article  Google Scholar 

  • Liu L., Cao X. L., Bai R., Yao N., Li L. B. and He C. F. 2012 Isolation and characterization of the cold-induced Phyllostachys edulis AP2/ERF family transcription factor, peDREB1. Plant Mol. Biol. Rep. 30, 679–689.

    Article  CAS  Google Scholar 

  • Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Goda H. et al. 1998 Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10, 391–406.

    Google Scholar 

  • Liu Y., Zhao T. J., Liu J. M., Liu W. Q., Liu Q., Yan Y. B. and Zhou H. M. 2006 The conserved Ala37 in the ERF/AP2 domain is essential for binding with the DRE element and the GCC box. FEBS. Lett. 580, 1303–1308.

    Article  PubMed  CAS  Google Scholar 

  • Magnani E., Sjolander K. and Hake S. 2004 From endonuclease to transcription factors: Evolution of the AP2 DNA binding domain in plants. Plant Cell. 16, 2265–2277.

    Article  PubMed  CAS  Google Scholar 

  • Magome H., Yamaguchi S., Hanada A., Kamiya Y. J. and Oda K. 2008 The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J. 56, 613–626.

    Article  PubMed  CAS  Google Scholar 

  • Nakano T., Suzuki K., Fujimura T. and Shinshi H. 2006 Genome wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140, 411–432.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K. and Yamaguchi-Shinozaki K. 2010 Promoters and transcription factors in abiotic-stress responsive gene expression. In Abiotic stress adaptation in plants (ed. A. Pareek, S. K. Sopory, H. J. Bohnert and Govindjee), pp. 199–216. Physiological, Molecular and Genomic Foundation, Springer, The Netherlands.

    Google Scholar 

  • Nakashima K, Shinwari Z. K., Sakuma Y., Seki M., Miura S., Shinozaki K. and Yamaguchi-Shinozaki K. 2000 Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration and high-salinity-responsive gene expression. Plant Mol. Biol. 42, 657–665.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K., Ito Y. and Yamaguchi-Shinozaki K. 2009 Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88–95.

    Article  PubMed  CAS  Google Scholar 

  • Navarro M., Marque G., Ayax C., Keller G., Borges J. P., Marque C. and Teulieres C. 2009 Complementary regulation of four eucalyptus CBF genes under various cold conditions. J. Exp. Bot. 60, 2713–2724.

    Article  PubMed  CAS  Google Scholar 

  • Novillo F., Alonso J. M., Ecker J. R. and Salinas J. 2004 CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 3985– 3990.

    Article  PubMed  CAS  Google Scholar 

  • Okamuro J. K., Caster B., Villarroel R., Van Montagu M. and Jofuku K. D. 1997 The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. USA 94, 7076–7081.

    Article  PubMed  CAS  Google Scholar 

  • Puhakainen T., Li C., Boije-Malm M., Kangasjärvi J., Heino P. and Palva E. T. 2004 Short-day potentiation of low temperature-induced gene expression of a C-repeat-binding factor-controlled gene during cold acclimation in silver birch. Plant Physiol. 136, 4299–4307.

    Article  PubMed  CAS  Google Scholar 

  • Qin F., Sakuma Y., Li J., Liu Q., Li Y. Q., Shinozaki K. and Yamaguchi-Shinozaki K. 2004 Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 45, 1042–1052.

    Article  PubMed  CAS  Google Scholar 

  • Qin Q., Liu J., Zhang Z., Peng R., Xiong A., Yao Q. and Chen J. 2007 Isolation, optimization, and functional analysis of the cDNA encoding transcription factor OsDREB1B in Oryza Sativa L. Mol. Breed. 19, 329–340.

    Article  CAS  Google Scholar 

  • Riechmann J. L. and Meyerowitz E. M. 1998 The AP2/EREBP family of plant transcription factors. Biol. Chem. 379, 633–646.

    PubMed  CAS  Google Scholar 

  • Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C., Keddie J. et al. 2000 Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  • Sakuma Y., Liu Q., Dubouzet, J. G., Abe H., Shinozaki K. and Yamaguchi-Shinozaki K. 2002 DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem. Biophys. Res. Commun. 290, 998–1009.

    Article  PubMed  CAS  Google Scholar 

  • Shen Y. G., Zhang W. K., Yan D. Q., Du B. X., Zhang J. S., Liu Q. and Chen S. Y. 2003 Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor. Appl. Genet. 107, 155–161.

    PubMed  CAS  Google Scholar 

  • Shinozaki K. and Yamaguchi-Shinozaki K. 2007 Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K. and Yamaguchi-Shinozaki K. 2000 Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3, 217–223.

    PubMed  CAS  Google Scholar 

  • Stockinger E. J., Gilmour S. J. and Thomashow M. F. 1997 Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94, 1035–1040.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow M. F. 1999 Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599.

    Article  PubMed  CAS  Google Scholar 

  • Thomashow M. F. 2001 So what’s new in the field of plant cold acclimation? Plant Physiol. 125, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Tong Z., Hong B., Yang Y., Li Q., Ma N., Ma C. and Gao J. 2009 Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis. Plant Mol. Biol. 71, 115–129.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa T., Fujita M., Fujita Y., Yamaguchi-Shinozaki K. and Shinozaki K. 2006 Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol. 17, 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Van Buskirk H. A. and Thomashow M. F. 2006 Arabidopsis transcription factors regulating cold acclimation. Physiol. Plant 126, 72–80.

    Article  Google Scholar 

  • Wang H. L., Tao J. J., He L. G., Zhao Y. J., Xu M., Liu D. C. and Sun Z. H. 2009 cDNA cloning and expression analysis of a Poncirus trifoliata CBF gene. Physiol. Plant. 53, 625–630.

    CAS  Google Scholar 

  • Wang Q., Guan Y., Wu Y., Chen H., Chen F. and Chu C. 2008 Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol. 67, 589–602.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q. J., Xu K. Y., Tong Z. G., Wang S. H., Gao Z. H., Zhang J. Y. et al. 2010 Characterization of a new dehydration responsive element binding factor in central arctic cowberry. Plant Cell Tiss. Organ Cult. 101, 211–219.

    Article  CAS  Google Scholar 

  • Wang W., Vinocur B. and Altman A. 2003 Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y. M. and He C. F. 2007 Isolation and characterization of cold-induced DREB gene from Aloe vera L. Plant Mol. Biol. Rep. 25, 121–132.

    Article  Google Scholar 

  • Welling A. and Palva T. 2008 Involvement of CBF transcription factors in winter hardiness in Birch. Plant Physiol. 147, 1199–1211.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H., Siddiqua M., Braybrook S. and Nassuth A. 2006 Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ. 29, 1410–1421.

    Article  PubMed  CAS  Google Scholar 

  • Xiao H., Tattersall E. A. R., Siddiqua M. K., Cramer G. and Nassuth A. 2008 CBF4 is a unique member of the CBF transcription factor family of Vitis vinifera and Vitis riparia. Plant Cell Environ. 31, 1–10.

    PubMed  CAS  Google Scholar 

  • Xiong Y. and Fei S. Z. 2006 Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.). Planta 224, 878–888.

    Article  PubMed  CAS  Google Scholar 

  • Xu Z. S., Chen M., Li L. C. and Ma Y. Z. 2008 Functions of the ERF transcription factor family in plants. Botany 865, 969–977.

    Article  Google Scholar 

  • Yang W., Liu X. D., Chi X. J., Wu C. A., Li Y. Z., Song L. L. et al. 2011 Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233, 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S., Li N., Gao F., Yang A. and Zhang J. 2010 Over-expression of TsCBF1 gene confers improved drought tolerance in transgenic maize. Mol. Breed. 26, 455–465.

    Article  CAS  Google Scholar 

  • Zhang X., Fowler S. G., Cheng H., Lou Y., Rhee S. Y., Stockinger E. J. and Thomashow M. F. 2004 Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 39, 905–919.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Life Science Research Board of Defence Research and Development Organization, New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. SINGH.

Additional information

[Akhtar M., Jaiswal A., Taj G., Jaiswal J. P., Qureshi M. I. and Singh N. K. 2012 DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J. Genet. 91, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Cite this article

AKHTAR, M., JAISWAL, A., TAJ, G. et al. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91, 385–395 (2012). https://doi.org/10.1007/s12041-012-0201-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-012-0201-3

Keywords

Navigation