Skip to main content
Log in

Genetic analyses for deciphering the status and role of photoperiodic and maturity genes in major Indian soybean cultivars

  • RESEARCH NOTE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Allelic combinations of major photoperiodic (E1, E3, E4) and maturity (E2) genes have extended the adaptation of quantitative photoperiod sensitive soybean crop from its origin (China ∼35 N latitude) to both north (up to ∼50 N) and south (up to 40 S) latitudes, but their allelic status and role in India (6–35 N) are unknown. Loss of function and hypoactive alleles of these genes are known to confer photoinsensitivity to long days and early maturity. Early maturity has helped to adapt soybean to short growing season of India. We had earlier found that all the Indian cultivars are sensitive to incandescent long day (ILD) and could identify six insensitive accessions through screening 2071 accessions under ILD. Available models for ILD insensitivity suggested that identified insensitive genotypes should be either e3 /e4 or e1 (e1-nl or e1-fs) with either e3 or e4. We found that one of the insensitive accessions (EC 390977) was of e3 /e4 genotype and hybridized it with four ILD sensitive cultivars JS 335, JS 95-60, JS 93-05, NRC 37 and an accession EC 538828. Inheritance studies and marker-based cosegregation analyses confirmed the segregation of E3 and E4 genes and identified JS 93-05 and NRC 37 as E3E3E4E4 and EC 538828 as e3e3E4E4. Further, genotyping through sequencing, derived cleaved amplified polymorphic sequences (dCAPS) and cleaved amplified polymorphic sequences (CAPS) markers identified JS 95-60 with hypoactive e1-as and JS 335 with loss of function e3-fs alleles. Presence of photoperiodic recessive alleles in these two most popular Indian cultivars suggested for their role in conferring early flowering and maturity. This observation could be confirmed in F 2 population derived from the cross JS 95-60 × EC 390977, where individuals with e1-as e1-as and e4e4 genotypes could flower 7 and 2.4 days earlier, respectively. Possibility of identification of new alleles or mechanism for ILD insensitivity and use of photoinsensitivity in Indian conditions have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

References

  • Abe J., Xu D. H., Miyano A., Komatsu K., Kanazawa A. and Shimamoto Y. 2003 Photoperiod-insensitive Japanese soybean landraces differ at two maturity loci. Crop Sci. 43, 1300–1304.

    Article  Google Scholar 

  • Bernard R. L. 1971 Two major genes for time of flowering and maturity in soybeans. Crop Sci. 11, 242–244.

    Article  Google Scholar 

  • Bonato E. R. and Vello N. A. 1999 E6 a dominant gene conditioning early flowering and maturity in soybeans. Genet. Mol. Biol. 22, 229–232.

    Article  Google Scholar 

  • Buzzell R. I. 1971 Inheritance of a soybean flowering response to fluorescent day length conditions. Can. J. Genet. Cytol. 13, 703–707.

    Google Scholar 

  • Buzzell R. I. and Voldeng H. D. 1980 Inheritance of insensitivity to long day length. Soybean Genet. Newsl. 7, 26–29.

    Google Scholar 

  • Cober E. R. and Voldeng H. D. 2001 A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci. 41, 698–701.

    Article  Google Scholar 

  • Cober E. R., Tanner J. W. and Voldeng H. D. 1996a Genetic control of photoperiod response in early-maturing near-isogenic soybean lines. Crop Sci. 36, 601–605.

  • Cober E. R., Tanner J. W. and Voldeng H. D. 1996b Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci. 36, 606–610.

  • Cober E. R., Molnar S. J., Charette M. and Voldeng H. D. 2010 A new locus for early maturity in soybean. Crop Sci. 50, 524–527.

    Article  Google Scholar 

  • Doyle J. J. and Doyle J. L. 1990 Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

    Google Scholar 

  • Hymowitz T. 1970 On the domestication of the soybean. Econ. Bot. 24, 408–421.

    Article  Google Scholar 

  • Jiang B., Nan H., Gao Y., Tang L., Yue Y., Lu S. et al. 2014 Allelic combinations of soybean maturilty loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS One 9, e106042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong F., Nan H., Cao D., Li Y., Wu F., Wang J. et al. 2014 A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci. 54, 2529–2535.

    Article  Google Scholar 

  • Lawn R. J. and James A. T. 2011a Application of physiological understanding in soybean improvement. I. Understanding phenological constraints to adaptation and yield potential. Crop Pasture Sci. 62, 1–11.

  • Lawn R. J. and James A. T. 2011b Application of physiological understanding in soybean improvement. II. Broadening phenological adaptation across regions and sowing dates. Crop Pasture Sci. 62, 12–24.

  • Liu B., Kanazawa A., Matsumura H., Takahashi R., Harada K. and Abe J. 2008 Genetic redundancy in soybean photoresponses associated with duplication of phytochrome A gene. Genetics 180, 996–1007.

    Article  Google Scholar 

  • McBlain B. A. and Bernard R. L. 1987 A new gene affecting the time of flowering and maturity in soybeans. J. Hered. 78, 160–162.

    Article  Google Scholar 

  • Piper C. V. and Morse W. J. 1910 The soybean; history, varieties, and field studies. Bull. U.S. Dep. Agric. Bur. Plant Ind. 197, 84.

    Google Scholar 

  • Ray J. D., Hinson K., Mankono E. B. and Malo F. M. 1995 Genetic control of a long-juvenile trait in soybean. Crop Sci. 35, 1001–1006.

    Article  Google Scholar 

  • Saindon G., Voldeng H. D., Beversdorf W. D. and Buzzell R. I. 1989a Genetic control of long day length response in soybean. Crop Sci. 29, 1436–1439.

  • Saindon G., Beversdorf W. D. and Voldeng H. D. 1989b Adjusting of the soybean phenology using the E4 loci. Crop Sci. 29, 1361–1365.

  • Singh R. K., Bhatia V. S., Yadav S., Athale R., Lakshmi N., Guruprasad K. N. et al. 2008 Identification of genetically diverse genotypes for photoperiod insensitivity in soybean using RAPD markers. Physiol. Mol. Biol. Plants 14, 369–375.

    Article  CAS  PubMed  Google Scholar 

  • Tsubokura Y., Matsumura H., Xu M., Liu B., Nakashima H., Anai T. et al. 2013 Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy 3, 117–134.

    Article  CAS  Google Scholar 

  • Tsubokura Y., Watanabe S., Xia Z., Kanamori H., Yamagata H., Kaga A. et al. 2014 Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann. Bot. 113, 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S., Hideshima R., Xia Z., Tsubokura Y., Sato S., Nakamoto Y. et al. 2009 Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182, 1251– 1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S., Xia Z., Hideshima R., Tsubokura Y., Sato S. and Harada K. 2011 A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188, 395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S., Harada K. and Abe J. 2012 Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed. Sci. 61, 531–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z., Watanabe S., Yamada T., Tsubokura Y., Nakashima H., Zhai H. et al. 2012 Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc. Natl. Acad. Sci. 109, E2155–E2164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu M., Xu Z., Liu B., Kong F., Tsubokura Y., Watanabe S. et al. 2013 Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol. 13, 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We thank the Director, ICAR-Indian Institute of Soybean Research for providing all the required facilities for conducting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SANJAY GUPTA.

Additional information

Corresponding editor: Umesh C. Lavania

Gupta S., Bhatia V. S., Kumawat G., Thakur D., Singh G., Tripathi R., Satpute G., Devadas R., Husain S. M. and Chand S. 2017 Genetic nalyses for deciphering the status and role of photoperiodic and maturity genes in major Indian soybean cultivars. J. Genet. 96, xx–xx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUPTA, S., BHATIA, V.S., KUMAWAT, G. et al. Genetic analyses for deciphering the status and role of photoperiodic and maturity genes in major Indian soybean cultivars. J Genet 96, 147–154 (2017). https://doi.org/10.1007/s12041-016-0730-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0730-2

Keywords

Navigation