Skip to main content
Log in

Noncoding RNAs in protein clearance pathways: implications in neurodegenerative diseases

  • REVIEW ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The importance of noncoding genome has become more evident in recent years. Before genome sequencing, the most well studied portion of our genome was protein coding genes. Interestingly, this coding portion accounted only for 1.5% of the genome, the rest being the noncoding sequences. Noncoding RNAs (ncRNAs) are involved in normal cell physiology, stress, and disease states. A class of small ncRNAs and miRNAs has gained much importance because of its involvement in human diseases such as cancer. Involvement of long ncRNAs have also been acknowledged in other human diseases, especially in neurodegenerative diseases. Neurodegenerative diseases are characterized by the presence of abnormally folded proteins that are toxic to the cell. Several studies from model organisms suggest upregulation of pathways that clear this toxic protein may provide protection against neurodegeneration. In this review, I summarize the importance of ncRNAs in protein quality control system of cell that is implicated in this fatal group of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amaral P. P., Clark M. B., Gascoigne D. K., Dinger M. E. and Mattick J. S. 2011 lncRNA db: a reference database for long noncoding RNAs. Nucleic Acids Res. 39, D146–D145.

    Article  CAS  PubMed  Google Scholar 

  • Amaral P. P., Dinger M. E. and Mattick J. S. 2013 Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective. Brief. Funct. Genomics 12, 254–278.

    Article  CAS  PubMed  Google Scholar 

  • Bartel D. P. 2009 MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates G. P. 2005 History of genetic disease: the molecular genetics of Huntington disease—a history. Nat. Rev. Genet. 6, 766–773.

    Article  CAS  PubMed  Google Scholar 

  • Bence N. F., Sampat R. M. and Kopito R. R. 2001 Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  • Böhmdorfer G. and Wierzbicki A. T. 2015 Control of Chromatin Structure by Long Noncoding RNA. Trends Cell Biol. 10, 623–632.

    Article  Google Scholar 

  • Bushati N. and Cohen S. M. 2007 microRNA functions. Annu. Rev. Cell Biol. 23, 175–205.

    Article  CAS  Google Scholar 

  • Carrell R. W. and Lomas D. A. 1997 Conformational disease. Lancet 350, 134–138.

    Article  CAS  PubMed  Google Scholar 

  • Chai Y., Koppenhafer S. L., Bonini N. M. and Paulson H. L. 1999 Analysis of the role of heat shock protein (hsp) molecular chaperones in Polyglutamine disease. J. Neurosci. 19, 10338–10347.

    CAS  PubMed  Google Scholar 

  • Chiba M., Kiyosawa H., Hiraiwa N., Ohkohchi N. and Yasue H. 2009 Existence of Pink1 antisense RNAs in mouse and their localization. Cytogenet. Genome Res. 126, 259–270.

    Article  CAS  PubMed  Google Scholar 

  • Chujo T., Yamazaki T. and Hirose T. 2015 Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim. Biophys. Acta 1859, 139–146.

    Article  PubMed  Google Scholar 

  • Ciechanover A. and Brundin P. 2003 The ubiquitin proteasome system in neuordegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446.

    Article  CAS  PubMed  Google Scholar 

  • Cortes C. J. and La Spada A. R. 2015 Autophagy in polyglutamine disease: imposing order on disorder or contributing to the chaos Mol. Cell. Neurosci. 66, 53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan K. J., Diamond M. J. and Welch W. J. 2003 Polyglutamine protein aggregation and toxicity are linked to the cellular stress response. Hum. Mol. Genet. 12, 1377–1391.

    Article  CAS  PubMed  Google Scholar 

  • Cummings C. J., Sun Y., Opan P., Antalffy B., Mestril R., Orr H. T. et al. 2001 Over-expression of inducible hsp70 chaperone suppresses neurophathlogy and improves motor function in SCA1 mice. Hum. Mol. Genet. 10, 1511–1518.

    Article  CAS  PubMed  Google Scholar 

  • Dantum N. P. and Bott L. C. 2014 The ubiquitin-proteasome system in neurodegenerative diseases: precipitating factor, yet part of the solution. Front. Mol. Neurosci. 7, 1–18.

    Google Scholar 

  • Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H. et al. 1997 Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for HD mutation. Cell 90, 537–548.

    Article  CAS  PubMed  Google Scholar 

  • DiFiglia M., Sapp E., Chase K. O., Davies S. W., Bates G. P. et al. 1997 Aggregation of Huntingtin in neuronal intranuclear inclusions and dystrophic neuritis in brain. Science 277, 1990– 1993.

    Article  CAS  PubMed  Google Scholar 

  • El Ayadi A., Stieren E. S., Barral J. M. and Boehning D. 2012 Ubiquilin-1 regulates amyloid precursor protein maturation and degradation by stimulating K63-linked polyubiquitination of lysine688. Proc. Natl. Acad. Sci. USA 109, 13416– 13421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsasser S. and Finley D. 2005 Delivery of ubiquitinated substrates to protein-unfolding machines. Nat. Cell Biol. 7, 742–749.

    Article  CAS  PubMed  Google Scholar 

  • Esteller M. 2011 Non coding RNAs in human disease. Nat. Rev. Genet. 12, 861–864.

    Article  CAS  PubMed  Google Scholar 

  • Faghihi M. A., Modarresi F., Khalil A. M., Wood D. E., Sahagan B. G. et al. 2008 Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med. 14, 723–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fatima R., Akhade V. S., Pal D. and Rao S. M. 2015 Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol. Cell Therapies 3, 5.

    Article  Google Scholar 

  • Femminella G. D., Ferrara N. and Rengo G. 2015 The emerging role of micro RNAs in Alzeihmer‘s disease. Front. Physiol. 6, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankel L. B. and Lund A. H. 2012 Micro RNA regulation of Autophagy. Carcinogenesis 100, 1–8.

    Google Scholar 

  • Frankel L. B., Wen J., Lees M., Hoyer-Hansen M., Farkas T. et al. 2011 AmicroRNA-101 is a potent inhibitor of autophagy. EMBO J. 30, 4628–4641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatchel J. R. and Zoghbi H. Y. 2005 Diseases of unstable repeat expansion: mechanisms and common principles. Nat. Rev. Genet. 6, 743–755.

    Article  CAS  PubMed  Google Scholar 

  • He C. and Klinosky J. D. 2009 Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He C. and Levine B. 2010 The Beclin 1 interactome. Curr. Opin. Cell Biol. 22, 140–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert S. S., Horre K., Nicolai L., Papadopoulou A. S. and Mandemakers W. 2008 Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/betasecretase expression. Proc. Natl. Acad. Sci. USA 105, 6415–6420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hershko A. and Ciechanover A. 1998 The ubiquitin system. Annu. Rev. Biochem. 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  • Hirose T. and Nakagawa S. 2016 Clues to long noncoding RNA taxonomy. Biochim. Biophys. Acta 1859, 1–2.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y., Chuang A. Y. and Ratovatski E. A. 2011 Phospho-DeltaNp63alpha/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 10, 3938–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer M. K., Niknafs Y. S., Malik R., Singhal U., Sahu A., Hosono Y. et al. 2015 The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 47, 199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jana N. R., Zemskov E. A., Wang G. and Nukina N. 2001 Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome release. Hum. Mol. Genet. 10, 1049–1059.

    Article  CAS  PubMed  Google Scholar 

  • Jia K., Hart A. C. and Levine B. 2007 Autophagy genes protect against disease caused by polyglutamine expansion proteins in Caenorhabditis elegans. Autophagy 3, 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Johnson R., Zuccato C., Belyaev N. D., Guest D. J., Cattaneo E. and Buckley N. J. 2008 A microRNA based gene dysregulation pathway in Huntington’s disease. Neurobiol. Dis. 29, 438–445.

    Article  CAS  PubMed  Google Scholar 

  • Johnson R., Richter N., Jauch R., Gaughwin P. M., Zuccato C., Cattaneo E. and Stanton L. W. 2010 Human accelerated region 1 non coding RNA is repressed by REST in Huntington’s disease. Physiol. Genomics 41, 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Jolly C. and Lakhotia S. C. 2006 Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res. 34, 5508–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jose A. M. 2015 Movement of regulatory RNA between animal cells. Genesis 53, 395–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S., Nollen E. A. A., Kitagawa K., Bindokas V. P. and Morimoto R. I. 2002 Poly-glutamine protein aggregates are dynamic. Nat. Cell Biol. 4, 826–831.

    Article  CAS  PubMed  Google Scholar 

  • Kim J., Inoue K., Ishii J., Vanti W. B., Voronov S. V., Murchison E. et al. 2007 A Micro RNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S. et al. 1998 Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  CAS  PubMed  Google Scholar 

  • Kleiger G. and Mayor T. 2014 Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol. 24, 352–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz G., Sage C. L., Tekridaq K. A., Agami R. and Gozuacik D. 2012 miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy 8, 165–176.

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia S. C. 2011 Forty years of the 93D puff of Drosophila melanogaster. J. Biosci. 36, 399–423.

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia S. C. 2012 Long non-coding RNAs coordinate cellular responses to stress. WIREs RNA 3, 779–796.

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia S. C. 2016 Non-coding RNAs have key roles in cell regulation. Proc. Indian Natl. Sci. Acad., 1–12.

  • Levine B. and Kroemer G. 2008 Autophagy in the pathogenesis of disease. Cell 132, 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallik M. and Lakhotia S. C. 2009 RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models. RNA Biol. 6, 464–478.

    Article  CAS  PubMed  Google Scholar 

  • Mallik M. and Lakhotia S. C. 2010 Improved activities of CBP hnRNPs and proteasome following down regulation of noncoding hsromega transcripts help suppress polyQ pathogenesis in fly models. Genetics 184, 927–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer T. R., Qureshi I. A., Gokhan S., Dinger M. E., Li G. and Mattick J. S. 2010 Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 11, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menghini R., Casagrande V., Marino A., Marchetti V., Cardellini M., Stoehr R. et al. 2014 MiR-216a: a link between endothelial dysfunction and autophagy. Cell Death Dis. 5, e1029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzias F. M., Fleming A. and Rubinsztein D. C. 2015 Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 16, 345–357.

    Article  Google Scholar 

  • Michelhaugh S. K., Lipovich L., Blythe J., Jia H., Kapatos G. and Bannon M. J. 2011 Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers. J. Neurochem. 116, 459–466.

    Article  CAS  PubMed  Google Scholar 

  • Millar J. K., Wilson-Annan J. C., Anderson S., Christie S., Taylor M. S., Semple C. A. et al. 2000 Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 9, 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  • Mitsui K., Nakayama H., Akagi T., Nekooki M., Ohtawa K., Takio K. et al. 2002 Purification of polyglutamine aggregates and identificationof elongation factor-1 a and heat shock protein 84 as aggregate- interacting protein. J. Neurosci. 22, 9267–9277.

    CAS  PubMed  Google Scholar 

  • Mondal T., Rasmussen M., Pandey G. K., Isaksson A. and Kanduri C. 2010 Characterization of the RNA content of chromatin. Genome Res. 20, 899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais V. A., Verstreken P., Roethig A., Smet J., Snellinx A., Vanbrabant M. et al. 2009 Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 1, 99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley M. L., Zu T., Ikeda Y., Gao W., Mosemiller A. K., Daughters R. S. et al. 2006 Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat. Genet. 38, 758–769.

    Article  CAS  PubMed  Google Scholar 

  • Mus E., Hof P. R. and Tiedge H. 2007 Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 104, 10679–10684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr H. T., Chung M. Y., Banfi S., Kwiatkowski T. J., Servadio A., Beaudet A. L. et al. 1993 Expression of an unstable CAG repeat in spinocerebellar ataxin type I. Nat. Genet. 4, 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Pandey U. B., Nie Z., Batlevi Y., McCray B. A., Ritson G. P., Nedelsky N. B. et al. 2007 HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863.

    Article  CAS  PubMed  Google Scholar 

  • Pattingre S., Espert L., Biard-Piechaczyk M. and Codongo P. 2008 Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90, 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Paulson H. L. 2009 The Spinocerebellar Ataxias. J. Neuro-Ophthalmol. 29, 227–237.

    Article  Google Scholar 

  • Perkins D. O., Jeffries C. D., Jarskog L. F., Thomson J. M., Woods K. et al. 2007 microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 8, R27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Persengiev S. P., Kondova I. I. and Bontrop R. E. 2012a The Impact of MicroRNAs on Brain Aging and Neurodegeneration. Curr. Gerontol. Geriatr. Res. 2012, 359–369.

    Article  Google Scholar 

  • Persengiev S., Kondova I. and Bontrop R. E. 2012b Functional annotation of small noncoding RNAs target genes provides evidence for a deregulated ubiquitin-proteasome pathway in spinocerebellar ataxia type 1. J. Nucleic Acids 2012, 1–11.

    Article  Google Scholar 

  • Perutz M. F., Johnson T., Suzuki M. and Finch J. T. 1994 Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 91, 5355–5358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickart C. M. 2001 Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533.

    Article  CAS  PubMed  Google Scholar 

  • Prasanth K. V., Rajendra T. K., Lal A. K. and Lakhotia S. C. 2000 Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsromega RNA in Drosophila. J. Cell Sci. 113, 3485–3497.

    CAS  PubMed  Google Scholar 

  • Quan M., Chen J. and Zhang D. 2015 Exploring the secrets of long noncoding RNAs. Int. J. Mol. Sci. 16, 5467–5496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi I. A., Mattick J. S. and Mehler M. F. 2010 Long noncoding RNAs in nervous system function and disease. Brain Res. 1338, 20–35.

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B., Imarisio S., Sarkar S., O’Kane C. J. and Rubinsztein D. C. 2008 Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell. Sci. 121, 1649–1660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein D. C., DiFiglia M., Heintz N., Nixon R. A., Qin Z. H., Ravikumar B. et al. 2005 Autophagy and Its Possible Roles in Nervous System Diseases, Damage and Repair. Autophagy 1, 11–22.

    Article  CAS  PubMed  Google Scholar 

  • Rubinsztein D. C., Gestwicki J. E., Murphy L. O. and Klionsky D. J. 2007 Potential therapeutic applications of autophagy. Nat. Rev. Drug Discov. 6, 304–312.

    Article  CAS  PubMed  Google Scholar 

  • Sakahira H., Breuer P., Hayer-Hartl M. K. and Hartl F. U. 2002 Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Sci. Acad. USA 99, 16412–16418.

    Article  CAS  Google Scholar 

  • Sarkar S., Perlstein E. O., Imarisio S., Pineau S., Cordenier A., Maglathlin R. L. et al. 2007 Small molecules enhance autophagy and reduce toxicity in Huntington’s disease models. Nat. Chem. Biol. 3, 331–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherzinger E., Lurz R., Turmaine M., Mangiarini I., Hollenbach B. et al. 1997 Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S. and Ganesh S. 2008 Non cod ing RNAs in polyglutamine disorders: friend or foe. J. Biosci. 33, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S. and Lakhotia S. C. 2006 Altered Expression of the noncoding hsr gene enhances poly-Q induced neurotoxicity in Drosophila. RNA Biol. 3, 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S., Parihar R. and Ganesh S. 2009 Satellite III non-coding RNAs show distinct and stress-specific patterns of induction. Biochem. Biophys. Res. Commun. 382, 102–107.

    Article  CAS  PubMed  Google Scholar 

  • Sherman M. Y. and Goldberg A. L. 2001 Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenrative diseases. Neuron 29, 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Sosa M. A., Gasperi R. and Elder G. A. 2012 Modeling human neurodegenerative diseases in transgenic systems. Hum. Genet. 131, 535–563.

    Article  Google Scholar 

  • Sunwoo H., Dinger M. E., Wilusz J. E., Amaral P. P., Mattick J. S. and Spector D. L. 2009 MEN epsilon/beta nuclear-retained non- coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19, 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vembar S. S. and Brodsky J. L. 2008 One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan P., Su W. and Zhuo Y. 2016 The role of long noncoding RNAs in neurodegenerative diseases. Mol. Neurobiol., 1–10.

  • Warrick J. M., Paulson H. L., Gray-Board G. L., Bui Q. T., Fischbeck K. H., Pittman R. N. et al. 1998 Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949.

    Article  CAS  PubMed  Google Scholar 

  • Warrick J. M., Chan H. Y., Gray-Board G. L., Chai Y., Paulson H. L. and Bonini N. M. 1999 Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23, 425–428.

    Article  CAS  PubMed  Google Scholar 

  • Williams A., Jahreiss L., Sarkar S., Saiki S., Menzies F. M., Ravikumar B. and Rubinsztein D. C. 2006 Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr. Top. Dev. Biol. 76, 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Wrana J. L. 1994 H19 a tumour suppressing RNA? BioEssays 16, 89–90.

    Article  CAS  PubMed  Google Scholar 

  • Xiao J., Zhu X., He B., Zhang Y., Kang B. O., Wang Z. et al. 2011 MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J. Biomed. Sci. 18, 35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H., Li J. J., Liu S., Zhao J., Jiang Y. -J., Song A. X. et al. 2014 Aggregation of polyglutamine-expanded ataxin-3 sequesters its specific interacting partners into inclusions: Implication in a loss-of-function pathology. Sci. Rep. 4, 6410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H., Wu H., Liu X., Li B., Chen Y., Ren X. et al. 2009 Regulation of autophagy by a beclin 1-targeted micro-RNA, miR-30a, in cancer cells. Autophagy 5, 816–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou Z., Wu L., Ding H., Wang Y., Zhang Y., Chen X. et al. 2012 MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy. J. Biol. Chem. 287, 4148–4156.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. S. C. Lakhotia at Cytogenetics Laboratory, BHU, Varanasi and Prof. S. Ganesh, Biological Sciences and Bioengineering Department, IIT Kampur, where the noncoding research work was carried out. I duly acknowledge the support of VIT University authorities for the inspiring academic environment. Funding from DBT is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SONALI SENGUPTA.

Additional information

Corresponding editor: S. Ganesh

[Sengupta S. 2017 Noncoding RNAs in protein clearance pathways: implications in neurodegenerative diseases. J. Genet. 96, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SENGUPTA, S. Noncoding RNAs in protein clearance pathways: implications in neurodegenerative diseases. J Genet 96, 203–210 (2017). https://doi.org/10.1007/s12041-017-0747-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0747-1

Keywords

Navigation