Skip to main content
Log in

Epigenetic inheritance, prions and evolution

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The field of epigenetics has grown explosively in the past two decades or so. As currently defined, epigenetics deals with heritable, metastable and usually reversible changes that do not involve alterations in DNA sequence, but alter the way that information encoded in DNA is utilized. The bulk of current research in epigenetics concerns itself with mitotically inherited epigenetic processes underlying development or responses to environmental cues (as well as the role of mis-regulation or dys-regulation of such processes in disease and ageing), i.e., epigenetic changes occurring within individuals. However, a steadily growing body of evidence indicates that epigenetic changes may also sometimes be transmitted from parents to progeny, meiotically in sexually reproducing organisms or mitotically in asexually reproducing ones. Such transgenerational epigenetic inheritance (TEI) raises obvious questions about a possible evolutionary role for epigenetic ‘Lamarckian’ mechanisms in evolution, particularly when epigenetic modifications are induced by environmental cues. In this review I attempt a brief overview of the periodically reviewed and debated ‘classical’ TEI phenomena and their possible implications for evolution. The review then focusses on a less-discussed, unique kind of protein-only epigenetic inheritance mediated by prions. Much remains to be learnt about the mechanisms, persistence and effects of TEI. The jury is still out on their evolutionary significance and how these phenomena should be incorporated into evolutionary theory, but the growing weight of evidence indicates that likely evolutionary roles for these processes need to be seriously explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal A. A. 2002 Herbivory and maternal effects: mechanisms and consequences of transgenerational induced plant resistance. Ecology 83, 3408–3415.

    Article  Google Scholar 

  • Alberti S., Halfmann R., King O., Kapila A. and Lindquist S. 2009 A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alleman M., Sidorenko L., McGinnis K., Seshadri V., Dorweiler J.E., White J. et al. 2006 An RNA-dependent RNA polymerase is required for paramutation in maize. Nature 442, 295–298.

    Article  CAS  PubMed  Google Scholar 

  • Angarica V. E., Ventura S. and Sancho J. 2013 Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genomics 14, 316.

    Article  CAS  Google Scholar 

  • Anway M. D., Cupp A. S., Uzumcu M. and Skinner M. K. 2005 Epigenetic transgenerational actions of endocrine disruptors and mate fertility. Science 308, 1466–1469.

    Article  CAS  PubMed  Google Scholar 

  • Ashe A., Sapetschnig A., Weick E.-M., Mitchell J., Bagijn M. P., Cording A. C. et al. 2012 piRNAs can trigger a multigenerational epigenetic memory in the germline of \(C\). elegans. Cell 150, 88–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastow R., Mylne J., Lister C., Lippman Z., Martiennsen R. and Dean C. 2004 Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164–167.

    Article  CAS  PubMed  Google Scholar 

  • Baudin-Baillieu A., Legendre R., Kuchly C., Hatin I., Demais S., Mestdagh C. et al. 2014 Genome-wide translational changes induced by the prion [\({PSI}^{+}\)]. Cell Reports 8, 439–448.

    Article  CAS  PubMed  Google Scholar 

  • Bondarev S. A., Zhouravleva G. A., Belousov M. V. and Kajava A. V. 2015 Structure-based view on [\(PSI^{+}\)] prion properties. Prion 9, 190–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J. C. S. and Lindquist S. 2009 A heritable switch in carbon source utilization driven by an unusual yeast prion. Genes Dev. 23, 2320–2332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bureau T. E., Ronald T. C. and Wessler S. R. 1996 A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93, 8524–8529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burggren W. 2016 Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology 5, 24.

    Article  PubMed Central  Google Scholar 

  • Chandler V. L. 2007 Paramutation: from maize to mice. Cell 128, 641–645.

    Article  CAS  PubMed  Google Scholar 

  • Chernoff Y. O. 2007 Stress and prions: lessons from the yeast model. FEBS Lett. 581, 3695–3701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernoff Y. O., Lindquist S. L., Ono B., Inge-Vechtomov S. G. and Liebman S. W. 1995 Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [\({PSI}^{+}\)]. Science 268, 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Chernoff Y. O., Galkin A. P., Lewitin E., Chernova T. A., Newnam G. P. and Belenkiy S. M. 2000 Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol. Microbiol. 35, 865–876.

    Article  CAS  PubMed  Google Scholar 

  • Chernova T. A., Wilkinson K. D. and Chernoff Y. O. 2014 Physiological and environmental control of yeast prions. FEMS Microbiol. Rev. 38, 326–344.

    Article  CAS  PubMed  Google Scholar 

  • Chernova T. A., Romanyuk A. V., Karpova T. S., Shanks J. R., Ali M., Moffatt N. et al. 2011 Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol. Cell 43, 242–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm R. H., Lorenzi T., Desvillettes L. and Hughes B. 2016 Evolutionary dynamics of phenotype-structured populations: from individual-level mechanisms to population-level consequences. Z. Angew. Math. Phys. 67, 100.

    Article  Google Scholar 

  • Chiti F. and Dobson C. M. 2006 Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.

    Article  CAS  PubMed  Google Scholar 

  • Coen E. S., Carpenter R. and Martin C. 1986 Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47, 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Cox B. S. 1965 [PSI], a cytoplasmic suppressor of super-suppression in yeast. Heredity 20, 505–521.

    Article  Google Scholar 

  • Cox B. S., Tuite M. F. and McLaughlin C. S. 1988 The Psi factor of yeast: A problem in inheritance. Yeast 4, 159–179.

    Article  CAS  PubMed  Google Scholar 

  • Crews D., Gillette R., Scarpino S. V., Manikkam M., Savenkova M. I. and Skinner M. K. 2012 Epigenetic transgenerational inheritance of altered stress responses. Proc. Natl. Acad. Sci. USA 109, 9143–9148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cropley J. E., Suter C. M., Beckman K. B. and Martin D. I. 2006 Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc. Natl. Acad. Sci. USA 103, 17308–17312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow E. T. and Li L. 2011 Newly identified prions in budding yeast, and their possible functions. Semin. Cell Dev. Biol. 22, 452–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cubas P., Vincent C. and Coen E. 1999 An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401, 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Danchin E., Charmantier A., Champagne F. A., Mesoudi A., Pujol B. and Blanchet S. 2011 Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat. Rev. Genet. 12, 475–486.

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L. and Whitelaw E. 2012 Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13, 153–162.

    Article  CAS  PubMed  Google Scholar 

  • Derkatch I. L., Bradley M. E., Hong J. Y. and Liebman S. W. 2001 Prions affect the appearance of other prions: the story of [\({PIN}^{+}\)]. Cell 106, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Doronina V. A., Staniforth G. L., Speldewinde S. H., Tuite M. F. and Grant C. M. 2015 Oxidative stress conditions increase the frequency of de novo formation of the yeast [\({PSI}^{+}\)] prion. Mol. Microbiol. 96, 163–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z., Park K. W., Yu H., Fan Q. and Li L. 2008 Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat. Genet. 40, 460–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z., Zhang Y. and Li L. 2015 The yeast prion [\({SWI}^{+}\)] abolishes multicellular growth by triggering conformational changes of multiple regulators required for flocculin gene expression. Cell Rep. 13, 2865–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan E. J., Gluckman P. D. and Dearden P. K. 2014 Epigenetics, plasticity, and evolution: How do we link epigenetic change to phenotype? J. Exp. Zool. B Mol. Dev. Evol. 322, 208–220.

    Article  CAS  PubMed  Google Scholar 

  • Durand S., Bouche N., Perez Strand E., Loudet O. and Camilleri C. 2012 Rapid establishment of genetic incompatibility through natural epigenetic variation. Curr. Biol. 22, 326–331.

    Article  CAS  PubMed  Google Scholar 

  • Edskes H. K., Khamar H. J., Winchester C. L., Greenler A. J., Zhou A., McGlinchey R.P. et al. 2014 Sporadic distribution of prion-forming ability of Sup35p from yeasts and fungi. Genetics 198, 605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedoroff N. V. 2012 Transposable elements, epigenetics, and genome evolution. Science 338, 758–767.

    Article  CAS  PubMed  Google Scholar 

  • Feil R. and Fraga M. F. 2012 Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13, 97–109.

    CAS  PubMed  Google Scholar 

  • Ferguson-Smith A.C. and Patti M.-E. 2011 You are what your dad ate. Cell Metab. 13, 115–117.

    Article  CAS  PubMed  Google Scholar 

  • Fox J. W. and Lenski R. E. 2015 From here to eternity—the theory and practice of a really long experiment. PLoS Biol. 13, e1002185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furrow R. E. and Feldman M.W. 2014 Genetic variation and the evolution of epigenetic regulation. Evolution 68, 673–683.

    Article  PubMed  Google Scholar 

  • Gabriel J.M. and Hollick J.B. 2015 Paramutation in maize and related behaviors in metazoans. Semin. Cell Dev. Biol. 44, 11–21.

    Article  PubMed  Google Scholar 

  • Giacopelli B.J. and Hollick J.B. 2015 Trans-homolog interactions facilitating paramutation in maize. Plant Physiol. 168, 1226–1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gòmez-Schiavon M. and Buchler N.E. 2016 Evolutionary dynamics of an epigenetic switch in a fluctuating environment. Online preprint not peer reviewed, available on Cold Spring Harbor preprint server (doi:http://dx.doi.org/10.1101/072199).

  • Gould S.J. 1977 Ontogeny and phylogeny. Belknap Press of Harvard University Press, Cambridge, USA.

    Google Scholar 

  • Griswold C.K. and Masel J. 2009 Complex adaptations can drive the evolution of the capacitor [PSI], even with realistic rates of yeast sex. PLoS Genet. 5, e1000517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Groot M.P., Kooke R., Knoben N., Vergeer P., Keurentjes J. J., Ouborg N. J. et al. 2016 Effects of multi-generational stress exposure and offspring environment on the expression and persistence of transgenerational effects in Arabidopsis thaliana. PLoS One 11, e0151566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grossniklaus U., Kelly W. G., Ferguson-Smith A. C., Pembrey M. and Lindquist S. 2013 Transgenerational epigenetic inheritance: how important is it? Nat. Rev. Genet. 14, 228–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfmann R., Alberti S. and Lindquist S. 2010 Prions, protein homeostasis, and phenotypic diversity. Trends Cell Biol. 20, 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfmann R. and Lindquist S. 2010 Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330, 629–632.

    Article  CAS  PubMed  Google Scholar 

  • Halfmann R., Jarosz D.F., Jones S. K., Chang A., Lancaster A. K. and Lindquist S. 2012 Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482, 363–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halfmann R., Alberti S., Krishnan R., Lyle N., O’Donnell C. W., King O.D. et al. 2011 Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol. Cell 43, 72–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heard E. and Martienssen R. A. 2014 Transgenerational Epigenetic Inheritance: myths and mechanisms. Cell 157, 95–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman J. J., Spencer H. G., Donohue K. and Sultan S. E. 2013 How stable ‘should’ epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution 68, 632–643.

    Article  PubMed  Google Scholar 

  • Herman J. J. and Sultan S. E. 2016 DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc. Roy. Soc. B 283, 1561.

    Article  Google Scholar 

  • Ho M. and Saunders P. T. 1979 Beyond Neo-Darwinism–an epigenetic approach to evolution. J. Theor. Biol. 78, 573–591.

    Article  CAS  PubMed  Google Scholar 

  • Hövel I., Pearson N.A. and Stam M. 2015 Cis-acting determinants of paramutation. Sem. Cell Dev. Biol. 44, 22–32.

    Article  CAS  Google Scholar 

  • Holeski L. M., Jander G. and Agrawal A. A. 2012 Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27, 618–626.

    Article  PubMed  Google Scholar 

  • Hollick J.B. 2012 Paramutation: a trans-homolog interaction affecting heritable gene regulation. Curr. Opin. Plant Biol. 15, 536–543.

    Article  CAS  PubMed  Google Scholar 

  • Holmes D. L., Lancaster A. K., Lindquist S. and Halfmann R. 2013 Heritable remodeling of yeast multicellularity by an environmentally responsive prion. Cell 153, 153–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasaki M. and Paszkowski J. 2014 Epigenetic memory in plants. EMBO J. 33, 1987–1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonka E. 2012 Epigenetic variations in heredity and evolution. Clin. Pharmacol. Therapeut. 92, 683–688.

    Article  CAS  Google Scholar 

  • Jablonka E. 2013 Epigenetic inheritance and plasticity: The responsive germline. Prog. Biophys. Mol. Biol. 111, 99–107.

    Article  PubMed  Google Scholar 

  • Jablonka E. and Lamm E. 2012 Commentary: The epigenotype–a dynamic network view of development. Int. J. Epidemiol. 41, 16–20.

    Article  PubMed  Google Scholar 

  • Jarosz D. F., Lancaster A. K., Brown J. C. S. and Lindquist S. 2014 An evolutionarily conserved prion-like element converts wild fungi from metabolic specialists to generalists. Cell 158, 1072–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosz D. F., Brown J. C., Walker G. A., Datta M. S., Ung W.L., Lancaster A. K. et al. 2014 Cross-kingdom chemical communication drives a heritable, mutually beneficial prion-based transformation of metabolism. Cell 158, 1083–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpinets T. V. and Foy B. D. 2005 Tumorigenesis: the adaptation of mammalian cells to sustained stress environment by epigenetic alterations and succeeding matched mutations. Carcinogenesis 26, 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  • King O. D. and Masel J. 2007 The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72, 560–575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita T. and Seki M. 2014 Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol. 55, 1859–1863.

    Article  CAS  PubMed  Google Scholar 

  • Koonin V. 2013 Does the central dogma still stand? Biol. Direct 7, 27.

    Article  CAS  Google Scholar 

  • Kryndushkin D. S., Alexandrov I. M., Ter-Avanesyan M. D. and Kushnirov V. V. 2003 Yeast [\({PSI}^{+}\)] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278, 49636–49643.

    Article  CAS  PubMed  Google Scholar 

  • Kronholm I. and Collins S. 2016 Epigenetic mutations can both help and hinder adaptive evolution. Mol. Ecol. 25, 1856–1868.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A. and Bennetzen J. L. 1999 Plant retrotransposons. Ann. Rev. Genet. 33, 479–532.

    Article  CAS  PubMed  Google Scholar 

  • Lacroute F. 1971 Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 206, 519–522.

    Google Scholar 

  • Lafon-Placette C. and Köhler C. 2015 Epigenetic mechanisms of postzygotic reproductive isolation in plants. Curr. Opin. Plant Biol. 23, 39–44.

    Article  CAS  PubMed  Google Scholar 

  • Laland K., Uller T., Feldman M., Sterelny K., Müller G. B., Moczek A. et al. 2014 Does evolutionary theory need a rethink? Nature 514, 161–164.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster A. K., Bardill J. P., True H. L. and Masel J. 2010 The spontaneous appearance rate of the yeast prion [\({PSI}^{+}\)] and its implications for the evolution of the evolvability properties of the [\({PSL}^+\)] system. Genetics 184, 393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster A. K. and Masel J. 2009 The evolution of reversible switches in the presence of irreversible mimics. Evolution 63, 2350–2362.

  • Lancaster A. K., Nutter-Upham A., Lindquist S. and King O. D. 2014 PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30, 2501–2502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lankinen A., Abreha K. B., Alexandersson E., Andersson S. and Andreasson E. 2016 Nongenetic inheritance of induced resistance in a wild annual plant. Phytopathology 106, 877–883.

    Article  PubMed  Google Scholar 

  • Liebman S. W. and Chernoff Y. O. 2012 Prions in yeast. Genetics 191, 1041–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J. P. and Brunet A. 2013 Bridging the transgenerational gap with epigenetic memory. Trends Genet. 29, 176–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lippman Z., Gendrel A. V., Black M., Vaughn M. W., Dedhia N., McCombie W. R. et al. 2004 Role of transposable elements in heterochromatin and epigenetic control. Nature 430, 471–476.

    Article  CAS  PubMed  Google Scholar 

  • MacLea K. S., Paul K. R., Ben-Musa Z., Waechter A., Shattuck J.E., Gruca M. et al. 2014 Distinct amino acid compositional requirements for formation and maintenance of the [\({PSI}^{+}\)] prion in yeast. Mol. Cell. Biol. 35, 899–911.

    Article  PubMed  CAS  Google Scholar 

  • March Z. M., King O. and Shorter J. 2016 Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res. 1647, 9–18.

    Article  CAS  PubMed  Google Scholar 

  • Mathieu O., Reinders J., Caikovski M., Smathajitt C. and Paszkowski J. 2007 Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell 130, 851–862.

    Article  CAS  PubMed  Google Scholar 

  • McClintock B. 1984 The significance of responses of the genome to challenge. Science 226, 792–801.

    Article  CAS  PubMed  Google Scholar 

  • Molinier J., Ries G., Zipfel C. and Hohn B. 2006 Transgeneration memory of stress in plants. Nature 442, 1046–1049.

    Article  CAS  PubMed  Google Scholar 

  • Morgan H. D., Sutherland H. G., Martin D. I. and Whitelaw E. 1999 Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318.

  • Newby G. A. and Lindquist S. 2013 Blessings in disguise: biological benefits of prion-like mechanisms. Trends Cell Biol. 23, 251–259.

    Article  CAS  PubMed  Google Scholar 

  • Newnam G. P., Birchmore J.L. and Chernoff Y.O. 2011 Destabilization and recovery of a yeast prion after mild heat shock. J. Mol. Biol. 408, 432–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Dea R. E., Noble D. W. A., Johnson S. L., Hesselson D. and Nakagawa S. 2016 The role of non-genetic inheritance in evolutionary rescue: epigenetic buffering, heritable bet hedging and epigenetic traps. Environ. Epigen. 2, 1–12.

    Article  Google Scholar 

  • Ost A., Lempradl A., Casas E., Weigert M., Tiko T., Deniz M. et al. 2014 Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159, 1352–1364.

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J. and Grossniklaus U. 2011 Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 14, 195–203.

    Article  CAS  PubMed  Google Scholar 

  • Patel B. K., Gavin-Smyth J. and Liebman S. W. 2009 The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat. Cell Biol. 11, 344–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patino M. M., Liu J., Glover J. R. and Lindquist S. 1996 Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273, 622–626.

    Article  CAS  PubMed  Google Scholar 

  • Pecinka A. and Mittelsten Scheid O. 2012 Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol. 53, 801–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pigliucci M. 2007 Do we need an extended evolutionary synthesis? Evolution 61, 2743–2749.

    Article  PubMed  Google Scholar 

  • Pilu R. 2015 Paramutation phenomena in plants. Sem. Cell Dev. Biol. 44, 2–10.

    Article  CAS  Google Scholar 

  • Probst A. V. and Mittelsten Scheid O. 2015 Stress-induced structural changes in plant chromatin. Curr. Opin. Plant Biol. 27, 8–16.

    Article  CAS  PubMed  Google Scholar 

  • Radford E. J., Ito M., Shi H., Corish J. A., Yamazawa K., Isganaitis E., Seisenberger S. et al. 2014 In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345, 785.

    Article  CAS  Google Scholar 

  • Rakyan V. K., Chong S., Champ M. E., Cuthbert P. C., Morgan H. D., Luu K.V. et al. 2003 Transgenerational inheritance of epigenetic states at the murine Axin (Fu) allele occurs after maternal and paternal transmission. Proc. Natl. Acad. Sci. USA 100, 2538–2543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remy J. J. 2010 Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878.

    Article  CAS  PubMed  Google Scholar 

  • Reidy M. and Masison D. C. 2011 Modulation and elimination of yeast prions by protein chaperones and co-chaperones. Prion 5, 245–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikhvanov E. G., Romanova N. V. and Chernoff Y. O. 2007 Chaperone effects on prion and nonprion aggregates. Prion 1, 217–222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogoza T., Goginashvili A., Rodionova S., Ivanov M., Viktorovskaya O., Rubel A. et al. 2010 Non-Mendelian determinant [\(\text{ ISP }^{+}\)] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc. Natl. Acad. Sci. USA 107, 10573–10577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanova N. V. and Chernoff Y. O. 2009 Hsp104 and prion propagation. Protein Pept. Lett. 16, 598–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronsseray S. 2015 Paramutation phenomena in non-vertebrate animals. Sem. Cell Dev. Biol. 44, 39–46.

    Article  Google Scholar 

  • Ross E. D., Baxa U. and Wickner R. B. 2004 Scrambled prion domains form prions and amyloid. Mol. Cell. Biol. 24, 7206–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapetschnig A., Sarkies P., Lehrbach N.J. and Miska E. 2015 Tertiary siRNAs mediate paramutation in C. elegans. PLoS Genet. 11, e1005078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schlichting C. D. and Wund M. A. 2014 Phenotypic plasticity and epigenetic marking: an assessment of evidence for genetic accommodation. Evolution 68, 656–672.

    Article  PubMed  Google Scholar 

  • Schmitz R.J. 2014 The secret garden-epigenetic alleles underlie complex traits. Science 343, 1082–1083.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz R. J. and Ecker J. R. 2012 Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci. 17, 149–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seong K.-Y., Dong L., Shimizu H., Nakamura R. and Ishii S. 2011 Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145, 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  • Shorter J. and Lindquist S. 2005 Prions as adaptive conduits of memory and inheritance. Nat. Rev. Genet. 6, 435–450.

    Article  CAS  PubMed  Google Scholar 

  • Shorter J. and Lindquist S. 2008 Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J. 27, 2712–2724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si K., Lindquist S. and Kandel E. R. 2003 A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115, 879–891.

    Article  CAS  PubMed  Google Scholar 

  • Sideri T. C., Koloteva-Levine N., Tuite M. F. and Grant C. M. 2011 Methionine oxidation of Sup35 protein induces formation of the [PSI+] prion in a yeast peroxiredoxin mutant. J. Biol. Chem. 286, 38924–38931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner M.K. 2015 Environmental epigenetics and a unified theory of the molecular aspects of evolution: a Neo-Lamarckian concept that facilitates Neo-Darwinian evolution. Genome Biol. Evol. 7, 1296–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sondheimer N. and Lindquist S. 2000 Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5, 163–172.

    Article  CAS  PubMed  Google Scholar 

  • Stam M., Belele C., Dorweiler J.E. and Chandler V.L. 2002 Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation. Genes Dev. 16, 1906–1918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung S. and Amasino R. M. 2004 Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki G., Shimazu N. and Tanaka M. 2012 A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336, 355–359.

  • Szyf M. 2015 Nongenetic inheritance and transgenerational epigenetics. Trends Mol. Med. 21, 134–144.

    Article  PubMed  Google Scholar 

  • Tarutani Y., Shiba H., Iwano M., Kakizaki T., Suzuki G., Watanabe M. et al. 2010 Trans-acting small RNA determines dominance relationships in Brassica self-incompatibility. Nature 466, 983–986.

    Article  CAS  PubMed  Google Scholar 

  • Toombs J. A., Liss N. M., Cobble K. R., Ben-Musa Z. and Ross E. D. 2011 [\({PSI}^{+}\)] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS One 6, e21953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • True H. L. and Lindquist S. 2000 A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483.

    Article  CAS  PubMed  Google Scholar 

  • True H. L., Berlin I. and Lindquist S. L. 2004 Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431, 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Tuite M. F. 2015 Yeast prions: Paramutation at the protein level? Semin. Cell Dev. Biol. 44, 51–61.

    Article  CAS  PubMed  Google Scholar 

  • Tuite M. F. and Serio T. R. 2010 The prion hypothesis: from biological anomaly to basic regulatory mechanism. Nat. Rev. Mol. Cell Biol. 11, 823–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turck C. and Coupland G. 2014 Natural variation in epigenetic gene regulation and its effects on plant developmental traits. Evolution 68, 620–631.

    Article  CAS  PubMed  Google Scholar 

  • Tyedmers J., Madariaga M. L. and Lindquist S. 2008 Prion switching in response to environmental stress. PLoS Biol. 6, e294.

  • Uller T., English S. and Pen I. 2015 When is incomplete epigenetic resetting in germ cells favoured by natural selection? Proc. R. Soc. B 282, 20150682.

  • Vandegehuchte M. B. and Janssen C.R. 2014 Epigenetics in an ecotoxicological context. Mutat. Res. 764–765, 36–45.

    Article  CAS  Google Scholar 

  • Verhoeven K. J. F., Vonholdt B. M. and Sork V. L. 2016 Epigenetic studies in ecology and evolution. Mol. Ecol. 25, 1631–1638.

    Article  PubMed  Google Scholar 

  • Waddington C. H. 1942 The epigenotype. Endeavour 1, 18–20.

    Google Scholar 

  • Weigel D. and Colot V. 2012 Epialleles in plant evolution. Genome Biol. 13, 249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wessler S. R. 1988 Phenotypic diversity mediated by the maize transposable elements Ac and Spm. Science 242, 399–405.

    Article  CAS  PubMed  Google Scholar 

  • White S. E., Habera L. F. and Wessler S. R. 1994 Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. Proc. Natl. Acad. Sci. USA 91, 11792–11796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitelaw E. 2015 Disputing Lamarckian epigenetic inheritance in mammals. Genome Biol. 16, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickner R. B. 1994 [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264, 566–569.

    Article  CAS  PubMed  Google Scholar 

  • Wickner R. B. 2016 Yeast and fungal prions. Cold Spring Harb. Perspect. Biol. 8, a023531.

    Article  PubMed  Google Scholar 

  • Wickner R. B., Edskes H. K., Bateman D., Kelly A. C. and Gorkovskiy A. 2011 The yeast prions \([{PSI}^{+}]\) and [URE3] are molecular degenerative diseases. Prion 5, 258–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W. 2014 Potential roles of noncoding RNAs in environmental epigenetic transgenerational inheritance. Mol. Cell Endocrinol. 398, 24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabel M.D. and Reid C. 2015 A brief history of prions. FEMS Pathog. Dis. 73, ftv087.

Download references

Acknowledgements

My thanks to Hiral Shah for her sharp-eyed proofreading and help in submitting this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Manjrekar.

Additional information

Corresponding editor: L. S. Shashidhara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjrekar, J. Epigenetic inheritance, prions and evolution. J Genet 96, 445–456 (2017). https://doi.org/10.1007/s12041-017-0798-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0798-3

Keywords

Navigation