Skip to main content
Log in

Marker-assisted pyramiding of Thinopyrum-derived leaf rust resistance genes Lr19 and Lr24 in bread wheat variety HD2733

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

This study was undertaken to pyramid two effective leaf rust resistance genes (Lr19 and Lr24) derived from Thinopyrum (syn. Agropyron), in the susceptible, but agronomically superior wheat cultivar HD2733 using marker-assisted selection. In the year 2001, HD2733 was released for irrigated timely sown conditions of the north eastern plains zone (NEPZ) of India became susceptible to leaf rust, a major disease of the region. Background selection helped in developing near-isogenic lines (NILs) of HD2733 with Lr19 and Lr24 with 97.27 and \(98.94\%\), respectively, of genomic similarity with the parent cultivar, after two backcrossing and one generation of selfing. NILs were intercrossed to combine the genes Lr19 and Lr24. The combination of these two genes in the cultivar HD2733 is expected to provide durable leaf rust resistance in farmers’ fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bhardwaj S. C., Prashar M., Jain S. K., Kumar S., Sharma Y. P., Sivasamy M. and Kalappanavar I. K. 2010 Virulence of Puccinia triticina on Lr28 in wheat and its evolutionary relation to prevalent pathotypes in India. Cereal Res. Commun. 38, 83–89.

    Article  Google Scholar 

  • Bhardwaj S. C., Prashar M., Kumar S., Jain S. K. and Datta D. 2005 Lr19 resistance in wheat becomes susceptible to Puccinia triticina in India. Plant Dis. 89, 1360.

    Article  Google Scholar 

  • Bhawar K. B., Vinod, Sharma J. B., Singh A. K., Sivasamy M., Singh M. et al. 2011 Molecular marker assisted pyramiding of leaf rust resistance genes Lr19 and Lr28 in bread wheat (Triticum aestivum L.) variety HD2687. Indian J. Genet. Plant Breed. 71, 304–311.

  • Gupta S. K., Charpe A., Koul S., Haq Q. M. R. and Prabhu K. V. 2006a Development and validation of SCAR markers co-segregating with an Agropyron elongatum derived leaf rust resistance gene Lr24 in wheat. Euphytica 150, 233–240.

    Article  CAS  Google Scholar 

  • Gupta S. K., Charpe A., Prabhu K. V. and Haq Q. M. R. 2006b Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet. 113, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Ishii T., Hayashi T. and Yonezawa K. 2008 Optimization of the marker-based procedures for pyramiding genes from multiple donor lines: multiple-gene assemblage using background marker selection. Crop Sci. 48, 2123–2131.

    Article  Google Scholar 

  • Joshi L. M., Singh D. V. and Srivastava K. D. 1988 Manual of wheat diseases. Malhotra publishing house, New Delhi.

    Google Scholar 

  • Kolmer J. A. 1996 Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 34, 435–455.

    Article  CAS  PubMed  Google Scholar 

  • Kolmer J. A. 2005 Tracking wheat rust on a continental scale. Curr. Opin. Plant. Biol. 8, 441–449.

    Article  PubMed  Google Scholar 

  • Mallick N., Vinod Sharma J. B., Tomar R. S., Sivasamy M. and Prabhu K. V. 2015 Marker assisted backcross breeding to transfer multiple rust resistance in wheat. Plant Breed. 134, 172–177.

  • McIntosh R. A., Dubcovsky J., Rogers W. J., Morris C., Appels R. and Xia X. C. Catalogue of gene symbols for wheat: 2015-16 Supplement. (https://shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp).

  • McIntosh R. A., Dyck P. L. and Green G. J. 1976 Inheritance of leaf rust and stem rust resistances in wheat varieties Agent and Agatha. Aust. J. Agric. Res. 28, 37–45.

    Article  Google Scholar 

  • Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight DNA. Nucleic Acids Res. 8, 4321–4325.

  • Nagarajan S., Joshi L. M., Srivastava K. D. and Singh D. V. 1980 Epidemiology of brown and yellow rusts of wheat in north India. IV. Disease management recommendations. Cereal Rusts Bull. 7, 15–20.

    Google Scholar 

  • Nayar S. K., Jain S. K., Prashar M., Bhardwaj S. C., Kumar S. and Menon M. K. 2003 Appearance of new pathotype of Puccinia recondita tritici virulent on Lr9 in India. Indian Phytopathol. 56, 196–198.

    Google Scholar 

  • Nayar S. K., Prashar M., Kumar J., Bhardwaj S. C. and Bhatnagar R. 1991 Pathotypes of Puccinia recondita f. sp. tritici virulent on Lr26 (IBL/IRS translocation) in India. Cereal Res. Commun. 19, 327–331.

    Google Scholar 

  • Pederson W. L. and Leath S. 1988 Pyramiding major genes for resistance to maintain residual effects. Annu. Rev. Phytopathol. 26, 369–378.

    Article  Google Scholar 

  • Peterson R. E., Campbell A. B. and Hannah A. E. 1948 A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can. J. Res. 26, 496–500.

    Article  Google Scholar 

  • Revathi P., Tomar S. M. S., Vinod and Singh N. K. 2010 Marker assisted gene pyramiding of leaf rust resistance genes Lr24, Lr28 along with stripe rust resistance gene Yr15 in wheat (Triticum aestivum L.). Indian J. Genet. Plant Breed. 70, 349–354.

  • Sharma D. and Knott D. R. 1966 The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8, 137–143.

    Article  Google Scholar 

  • Sharma R. K., Singh P. K., Vinod Joshi A. K., Bhardwaj S. C., Bains N. S. and Singh S. 2013 Protecting south Asia wheat production from stem rust (Ug99) epidemic. J. Phytopathol. 161, 299–307.

  • Singh R. P., Huerta-Espino J., Rajaram S. and Crossa J. 1998 Agronomic effects from chromosome translocations 7DL.7AG and 1BL.1RS in spring wheat. Crop Sci. 38, 27–33.

    Article  Google Scholar 

  • Sivasamy M., Tomar S. M. S., Vinod Brahma R. N., Tiwari R. and Prashar M. 2007 Diversifying the genetic base for resistance in Indian bread wheat cultivars through introgression and pyramiding of newer, effective stem rust resistance genes to combat the threat from Ug99 pathotype virulent on Sr31. Annu. Wheat Newslet. 53, 40–42.

  • Sivasamy M., Vinod Tiwari S., Tomar R. S., Singh B., Sharma J. B. et al. 2009 Introgression of useful linked genes for resistance to stem rust, leaf rust and powdery mildew and their molecular validation in wheat. Indian J. Genet. Plant Breed. 69, 17–27.

  • Tomar S. M. S., Singh S. K., Sivasamy M. and Vinod 2014 Wheat rusts in India: Resistance breeding and gene deployment – A review. Indian J. Genet. Plant Breed. 74, 129–156.

Download references

Acknowledgements

We thank Department of Biotechnology, Government of India, for funding the grant under Accelerated Crop Improvement Programme (DBT sanction order no. and date BT/PR11704/AGR/02/645/2008 dated 24.09.2009). The authors also express their sincere thanks to the Regional Station, ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, for supplying inocula of the leaf and stem rust pathogens, and the ICAR-Indian Agricultural Research Institute, New Delhi, for providing facilities for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod.

Additional information

Corresponding editor: Arun Joshi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Mallick, N., Chand, S. et al. Marker-assisted pyramiding of Thinopyrum-derived leaf rust resistance genes Lr19 and Lr24 in bread wheat variety HD2733. J Genet 96, 951–957 (2017). https://doi.org/10.1007/s12041-017-0859-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0859-7

Keywords

Navigation