Skip to main content
Log in

RNA-Seq Transcriptome Analysis in Date Palm Suggests Multi-Dimensional Responses to Salinity Stress

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

The ability of date palm tree to survive under adverse abiotic conditions renders it as a valuable genomic resource for identifying tolerance genes. While mechanisms for salt tolerance have been heavily investigated in model as well as in some agronomic crops, no such studies have been undertaken in date palm. The aim of this study is to identify stress tolerance-related genes through transcriptomic analysis to support further functional studies. Young roots of Deglet Beida cultivar have been subjected to salt stress treatment, and used for RNA-Seq expression profiling and transmission electron microscopy (TEM) analysis. A total of 1939 genes are found to be differentially expressed between mock-treated roots and salt-stressed roots using log2FC ≥15≤−15. Many of these regulatory genes belong to DNA/RNA, protein, membrane, and signaling functional categories, suggesting that these genes play functional roles in tolerance to salt stress. Furthermore, RNA-Seq analysis has revealed activation of abscisic acid signaling pathways through SNF1-related protein kinases 2. Additionally, certain key genes involved in sodium uptake and transport are down-regulated, suggesting a potential mechanism for slowing down up-take and transport of salt solutes within plant tissues. TEM analysis has revealed that stressed roots exhibit plasmolysis in cortical cells of the distal region, while epidermal cells do not. Interestingly, root-tip regions of stressed roots do not exhibit plasmolysis, and this is likely due to higher solute contents present in these sink cells. These findings provide new information on multi-dimensional responses of date palm to salinity stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

DRE:

Dehydration-responsive element

FPKM:

Fragments per kilobase of transcript per million

qRT-PCR:

Quantitative reverse transcriptase PCR

RNA-Seq:

RNA sequencing

ROS:

Reactive oxygen species

SnRK:

SNF1-related protein kinase

LEA:

Late embryogenesis-abundant

SOS2:

Salt overly sensitive2

References

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G, Wu F (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. PLoS One 8(10):e77869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Malek JA (2011) De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 29:521–27

    Article  CAS  PubMed  Google Scholar 

  • Al-Mssallem IS, Hu S, Zhang X, Lin Q, Liu W, Tan J et al (2013) Genome sequence of the date palm Phoenix dactylifera L. Nat Commun 4:2274. doi:10.1038/ncomms3274

    Article  PubMed Central  PubMed  Google Scholar 

  • Alrasbi SAR, Hussain N, Schmeisky, H (2010) Evaluation of the growth of date palm seedlings irrigated with saline water in the Sultanate of Oman. In Proceedings of the IV International Date Palm Conference (Abu Dhabi) 882:233–246

  • Avramova V, AbdElgawad H, Zhang Z, Fotschki B, Casadevall R, Vergauwen L, Knapen D, Taleisnik E (2015) Drought induces distinct growth response, protection and recovery mechanisms in the maize leaf growth zone. Plant Physiol. doi:10.1104/pp.15.00276

    PubMed Central  PubMed  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci U S A 97:14819–14824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101

    Article  CAS  Google Scholar 

  • Bourgis F, Kilaru A, Cao X, Ngando-Ebongue GF, Drira N, Ohlrogge JB et al (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A 108:12527–12532. doi:10.1073/pnas.1106502108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brocard IM, Lynch TJ, Finkelstein RR (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol 129:1533–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chao CT, Krueger RR (2007) The date palm (Phoenix dactylifera L): overview of biology, uses, and cultivation. HortScience 42:1077–1082

    Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560, PubMed: 18662937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta (BBA) Gene Regul Mech 1819:120–128

    Article  CAS  Google Scholar 

  • Cho SK, Ryu MY, Song C, Kwak JM, Kim WT (2008) Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligases that play combinatory roles in response to drought stress. Plant Cell 20:1899–1914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatuso S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 11:2–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Durst F, O’Keefe D (1995) Drug Metabol Drug Interact 12:171–187

    CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell (Suppl) 14:S15–S45

    CAS  Google Scholar 

  • Fujiwara S, Mitsuda N, Nakai Y, Kigoshi K, Suzuki K, Ohme-Takagi M (2014) Chimeric repressor analysis identifies MYB87 as a possible regulator of morphogenesis via cell wall organization and remodeling in Arabidopsis. Biotechnol Lett 36:1049–57

    Article  CAS  PubMed  Google Scholar 

  • Furr JR, Armstrong WW (1975) Water and salinity problems of Abadan Island date gardens. Ann Date Growers Inst 52:14–17

    Google Scholar 

  • Furr JR, Ream CL (1968) Salinity effects on growth and salt uptake of seedlings of the date, Phoenix dactylifera L. Proc Am Soc Hortic Sci 92:268–273

    Google Scholar 

  • Gillissen B, Bürkle L, André B, Kühn C, Rentsch D, Brandl B, Frommer WB (2000) New family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12:291–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Hasegawa PM (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126:363–375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong D, Guo Y, Jagendorf AT, Zhu JK (2002) Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance. Plant Physiol 130:256–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Govindarajulu M, Kim SY, Libault M, Berg RH, Tanaka K, Stacey G, Taylor CG (2009) GS52 ecto-apyrase plays a critical role during soybean nodulation. Plant Physiol 149:994–1004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hess MW (2007) Cryopreparation methodology for plant cell biology. Methods Cell Biol 79:57–100

    Article  CAS  PubMed  Google Scholar 

  • Hewitt AA (1963) Effect of different salts and salt concentration on the germination and subsequent growth of Deglet Noor date seeds. Date Growers Inst Rep 40:4–6

    Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N et al (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu JL, Wang LY, Wang SY, Lin CH, Ho KC, Shi FK, Chang F (2009) Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci 7:42

    Article  PubMed Central  PubMed  Google Scholar 

  • Jonak C, Hirt H (2002) Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci 7:457–461

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador V-A, Scheremetjew M, Yong S-Y, Lopez R, Hunter S (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics. doi:10.1093/bioinformatics/btu031

    Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim MH, Sonoda Y, Sasaki K, Kaminaka H, Imai R (2013) Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm. Cell Stress Chaperones 18:517–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G et al (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466

    Article  CAS  PubMed  Google Scholar 

  • Kulik A, Wawer I, Krzywinska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases key regulators of plant OMICS A. J Integr Biol 15:859–872

    CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Li W, Wang F, Wang J, Fan F, Zhu J, Yang J, Liu F, Zhong W (2015) Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice. PLoS One 10(3):e0119867, 101371/journalpone0119867

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci 97:3730–3734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma T, Wang J, Zhou G, Yue Z, Hu Q, Chen Y, Jianquan L (2013) Genomic insights into salt adaptation in a desert poplar Nature communications 4

  • Mahfouz MM, Kim S, Delauney AJ, Verma DP (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18:477–490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mathew LS, Spannagl M, Al-Malki A, George B, Torres MF, Al-Dous EK et al (2014) A first genetic map of date palm (Phoenix dactylifera) reveals long- range genome structure conservation in the palms. BMC Genomics 15:285. doi:10.1186/1471-2164-15-285

    Article  PubMed Central  PubMed  Google Scholar 

  • McMaugh SJ, Lyon BR (2003) Real-time quantitative RT-PCR assay of gene expression in plant roots during fungal pathogenesis. Biotechniques 34:982–986

    CAS  PubMed  Google Scholar 

  • Mizutani M, Ward E, Ohta E (1998) Plant geraniol/nerol 10 hydroxylase and DNA coding therefore., PCT international patent. Plant Mol Biol 37:39–52

    Article  CAS  PubMed  Google Scholar 

  • Monaco MK, Sen TZ, Dharmawardhana PD, Ren L, Schaeffer M, Naithani S, Amarasinghe V et al (2012) Maize metabolic network construction and transcriptome analysis. Plant Genome 6:1–12

    Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R, Ismagul A, Eliby S, Shirley N, Langridge P, Lopato S (2011) Improvement of stress tolerance of wheat and barley by modulation of the expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Schachtman D, Condon A (1995) The Significance of a two-phase growth response to salinity in wheat and barley. Funct Plant Biol 22:561–569

    CAS  Google Scholar 

  • Munns R, Rebetzke GJ, Husain S, James RA, Hare RA (2003) Genetic control of sodium exclusion in durum wheat. Aust J Agric Res 54:627–635

    Article  CAS  Google Scholar 

  • Munns R, Goyal S, Passioura J (2004) Salinity stress and its mitigation plant stress. Website Blum A (ed) available at http://www.plantstresscom/Articles/indexasp

  • Mutava RN, Prince SK, Syed NH, Song L, Valliyodan B, Chen W, Nguyen HT (2015) Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Plant Physiol Biochem 86:109–120

    Article  CAS  PubMed  Google Scholar 

  • Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Yoon IS (2012) Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 10:1186

    Article  Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2013) Fatality of salt stress to plants: Morphological, physiological and biochemical aspects. Afr J Biotechnol 9 (34)

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Chen SY (2010) Receptor‐like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62:316–329

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signaling networks in plant defense. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP, Shinozaki K, Yamaguchi-Shinozaki K (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stress in Zea mays L. Plant J 50:54–69

    Article  CAS  PubMed  Google Scholar 

  • Radwan O, Liu Y, Clough SJ (2011) Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome. Mol Plant Microbe Interact 24:958–972

    Article  CAS  PubMed  Google Scholar 

  • Radwan O, Wu X, Govindarajulu M, Libault M, Neece DJ, Oh MH, Berg RH, Stacey G, Taylor CG, Huber SC, Clough SJ (2012) 14-3-3 proteins SGF14c and SGF14l play critical roles during soybean nodulation. Plant Physiol 160:2125–2136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramoliya PJ, Pandey AN (2003) Soil salinity and water status affect growth of Phoenix dactylifera seedlings. N Z J Crop Hortic Sci 4:345–53

    Article  Google Scholar 

  • Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell Online 23:2010–2032

    Article  CAS  Google Scholar 

  • Reis RR, da Cunha BA, Martins PK, Martins MT, Alekcevetch JC, Chalfun A Jr, Andrade AC, Ribeiro AP, Qin F, Mizoi J, Yamaguchi-Shinozaki K, Nakashima K, Carvalho JF, de Sousa CA, Nepomuceno AL, Kobayashi AK, Molinari HB (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221–222:59–68

    Article  PubMed  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Rohde A, Van Montagu M, Boerjan W (1999) The ABSCISIC ACIDINSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis. Plant Cell Environ 22:261–270

    Article  CAS  Google Scholar 

  • Rohde A, Kurup S, Holdsworth M (2000) ABI3 emerges from the seed. Trends Plant Sci 5:418–419

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Sek M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci U S A 103:18828–33

    Article  Google Scholar 

  • Shahid MA, Pervez MA, Balal RM, Ahmad R, Ayyub CM, Abbas T, Akhtar N (2011) Salt stress effects on some morphological and physiological characteristics of okra (Abelmoschus esculentus L). Soil Environ 30 (1)

  • Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    Article  CAS  PubMed  Google Scholar 

  • Signora L, Smet I, Foyer C, Zhang H (2001) ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis. Plant J 28:655–662

    Article  CAS  PubMed  Google Scholar 

  • Söderman E, Brocard I, Lynch T, Finkelstein R (2000) Regulation and function of the Arabidopsis ABA-insensitive4 (ABI4) gene in seed and ABA response signaling networks. Plant Physiol 124:1752–1765

    Article  PubMed Central  PubMed  Google Scholar 

  • Szekeres M, Ne’meth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Re’dei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, Ladunga I, Ulitsky-Lazareva B, Muruganujan A, Rabkin S, Vandergriff JA, Doremieux O (2003) PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res 31:334–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wurzinger B, Mair A, Pfister B, Teige M (2011) Crosstalk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 6:8–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Zhu J-K (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Gong Z, Rock C, Subramanian S, Guo Y, Xu W, Galbraith D, Zhu JK (2001a) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1:771–781

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Ishitani M, Lee H, Zhu JK (2001b) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress-responsive gene expression. Plant Cell 13:2063–2083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002a) Regulation of osmotic stress responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Shumaker KS, Zhu JK (2002b) Cell signaling during cold, drought and salt stresses. Plant Cell 14:S165–S183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zaid A, deWet PF (2002) Climatic requirements of date palm. In: Zaid A (ed) Date palm cultivation, food and agriculture organization plant production and protection paper no.156. Food and Agriculture Organization of the United Nations, Rome, pp 57–72

    Google Scholar 

  • Zaid A, Liebenberg PJ (2005) Date palm irrigation. In: Date palm cultivation. pp. 164–179. FAO. Roma. Italy

  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115:1–22

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Pan L, YinY LW, Huang D, Zhang T et al (2012a) Large-scale collection and annotation of gene models for date palm (Phoenix dactylifera, L.). Plant Mol Biol 79:521–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012b) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–85

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu, JK (2007) Plant salt stress. Wiley

Download references

Acknowledgments

Authors would like to thank Dr. Robert Krueger (USDA-ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside CA, USA) for providing date palm seeds. This research was made possible by two grants from the Qatar National Research Fund (QNRF) under National Priorities Research Program (NPRP09-705-4-025 and NPRP-5-1040-4-013). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the QNRF. We thank Dr. Alvaro Hernandez (Roy J Carver Biotechnology Center/WM Keck Center, University of Illinois at Urbana-Champaign, IL, USA) for construction of libraries and for sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osman Radwan.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest

Additional information

Communicated by: Ray Ming

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Enriched pathways of genes that are highly expressed in response to salt stress. A. Suberin biosynthesis genes showed significant expression level changes, particularly in the phenyalanine biosynthesis step that is showed a >2x fold-change expression in the trans-cinname4.monoexygenase gene. B. Cell wall regeneration pathway, particularly genes involved in the initiating phosphorylation step, showed sustained transcriptional activity at 2 and 4 hpt. Gramene’s Pathway tools on MaizeCyc database was used for this analysis (PPTX 74 kb)

Supplementary Figure 2

GO molecular function terms for up- and down- regulated genes at 2 and 4 hpt under NaCl stress conditions. Hpt: hour post treatment (PPTX 351 kb)

Supplementary Table 1

List of genes used in quantitative RT-PCR (qRT-PCR) for RNA-Seq validation and their respective annotation, primers used and TM °C for each primer. For; forward primer and Rev; reverse primer (XLSX 10 kb)

Supplementary Table 2

Gene enrichment analysis (XLSX 9 kb)

Supplementary Table 3

Differentially expressed genes in response to salt stress treatment at 2 and 4 hpt. Hpt: hour post treatment. Green color refers to down-regulation, while red color refers to up-regulation. (XLSX 241 kb)

Supplementary Table 4

Up- regulated genes at 2 and 4 hpt. Hpt: hour post treatment. Green color refers to down-regulation, while red color refers to up-regulation. (XLSX 12 kb)

Supplementary Table 5

Up-regulated genes at 2 hpt. Green color refers to down-regulation, while red color refers to up-regulation. (XLSX 32 kb)

Supplementary Table 6

Down -regulated genes at 2 and 4 hpt. Hpt: hour post treatment. Green color refers to down-regulation, while red color refers to up-regulation. (XLSX 19 kb)

Supplementary Table 7

Down-regulated genes at 2 hpt. Hpt: hour post treatment. Green color (XLSX 207 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, O., Arro, J., Keller, C. et al. RNA-Seq Transcriptome Analysis in Date Palm Suggests Multi-Dimensional Responses to Salinity Stress. Tropical Plant Biol. 8, 74–86 (2015). https://doi.org/10.1007/s12042-015-9155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-015-9155-y

Keywords

Navigation