Skip to main content
Log in

Investigation of halo structure of 6He by hyperspherical three-body method

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Hyperspherical harmonics expansion method is applied to a three-body model of two neutron halo nuclei. Convergence of the expansion has been ensured. A repulsive part is introduced in the interaction between the core and the extra-core neutron, to simulate Pauli principle. Two neutron separation energy, r.m.s. radii, correlation factor and probability density distributions have been calculated for 6He. It is found that the convergence of the two neutron separation energy is relatively slow, while other quantities reach convergence quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B M Sherril, Radioactive Nuclear Beams, Proc. of Second International Conference edited by Th Delbar, Louvain-La-Neuve, Eelgium, August 1991, p. 3

    Google Scholar 

  2. D Guerreau, Physics With Exotic Nuclei, Proc. Tours Symposium on Nuclear Physics — II (Tours, France, Aug. 30–Sept. 2, 1994), World Scientific, p. 137

  3. I Tanihata, Nucl. Phys. A522, 275c (1991)

  4. P G Hansen and B Jonson, Europhys. Lett. 4, 409 (1987)

    Article  ADS  Google Scholar 

  5. R Bertulani and G Baur, Nucl. Phys. A480, 615 (1988)

    ADS  Google Scholar 

  6. T Kobayashi and S Shimoura, Phys. Lett. B232, 51 (1989)

    ADS  Google Scholar 

  7. M V Zhukov, B V Danilin and D V Federov, Phys. Rep. 231(4), 151 (1993)

    Article  ADS  Google Scholar 

  8. L V Chulkov, B V Danilin, V D Efros, A A Korsheninnikov and M V Zhukov, Europhys. Lett. 8, 245 (1989)

    Article  ADS  Google Scholar 

  9. I Tanihata, H Hamagaki, O Hashimoto and S Nagamiya, Phys. Lett. B160, 380 (1985)

    ADS  Google Scholar 

  10. K Riisager, M J G Borge, H Gabelmann and P G Hansen, Phys. Lett. B235, 30 (1990)

    ADS  Google Scholar 

  11. I J Thompson et al, nucl-th/9705001, 1 May 1997

  12. D V Federov, A S Jensen and K Riisager, Phys. Rev. C49(1), 201 (1998)

    ADS  Google Scholar 

  13. J S Al Khalili and J A Tostevin, Phys. Rev. C57(4), 1846 (1998)

    ADS  Google Scholar 

  14. A Cobis, D V Federov and A S Jensen, Phys. Rev. C58(3), 1403 (1998)

    ADS  Google Scholar 

  15. S Karataglidis, P J Dortmans, K Amos and C Bennhold, nucl-th/9811045 V2, 6 May, 1999

  16. S Dasgupta, I Mazumdar and V S Bhasin, Phys. Rev. C50, R550 (1994)

  17. I Mazumdar and V S Bhasin, Phys. Rev. C61, 51303 (2000)

    ADS  Google Scholar 

  18. V S Bhasin, Pramana — J. Phys. 53, 3, 567 (1999)

    Article  ADS  Google Scholar 

  19. P G Hansen, A S Jensen and B Jonson, Ann. Rev. Nucl. Part Sci. 45, 591 (1995)

    Article  ADS  Google Scholar 

  20. V Efimov, Nucl. Phys. A210, 157 (1973)

    ADS  Google Scholar 

  21. V N Efimov, Phys. Rev. C47, 1876 (1993)

    ADS  Google Scholar 

  22. D V Federov, A S Jensen and W K Rissager, Phys. Rev. Lett. 73, 2817 (1994); Phys. Rev. C49, 201 (1994)

    Article  ADS  Google Scholar 

  23. D V Federov and A S Jensen, Phys. Rev. Lett. 71, 4103 (1993)

    Article  ADS  Google Scholar 

  24. C D Lin, Phys. Rep. 257, 1 (1995)

    Article  ADS  Google Scholar 

  25. T H Gronwall, Phys. Rev. 51, 655 (1937)

    Article  MATH  ADS  Google Scholar 

  26. J Macek, J. Phys. B1, 831 (1968)

    ADS  Google Scholar 

  27. H Fakuda, T Ishihura and S Hara, Phys. Rev. A41, 1455 (1990)

    Google Scholar 

  28. J L Ballot and J Navarro, J. Phys. B8, 172 (1975)

    ADS  Google Scholar 

  29. R C Whitten and J S Sims, Phys. Rev. A9, 1586 (1974)

    ADS  Google Scholar 

  30. R M Shoucri and B T Darling, Phys. Rev. A12, 2272 (1975)

    ADS  MathSciNet  Google Scholar 

  31. V B Mandelzweig, Phys. Lett. A78, 25 (1980)

    ADS  MathSciNet  Google Scholar 

  32. V D Efros, A M Frolov and M I Mukhtarova, J. Phys. B15, 1819 (1982)

    Google Scholar 

  33. T K Das, R Chattopadhyay and P K Mukherjee, Phys. Rev. A50, 3521 (1994)

    ADS  Google Scholar 

  34. R Chattopadhyay, T K Das and P K Mukherjee, Phys. Scr. 54, 601 (1996)

    Article  ADS  Google Scholar 

  35. R Chattopadhyay and T K Das, Phys. Rev. A57, 1281 (1997)

    ADS  Google Scholar 

  36. Md A Khan, S K Datta and T K Das, Fizika B (Zagreb) 8(4), 469 (1999)

    ADS  Google Scholar 

  37. T K Das, H T Coelho and M Fabre de la Ripelle, Phys. Rev. C26, 2288 (1982)

    ADS  Google Scholar 

  38. H T Coelho, T K Das and M Fabre de la Ripelle, Phys. Letts. B109, 255 (1982)

    ADS  Google Scholar 

  39. T K Das and H T Coelho, Phys. Rev. (Rapid Commun.) C26, 754 (1982)

    ADS  Google Scholar 

  40. Md A Khan and T K Das, Fizika B (Zagreb) 9(2), 55 (2000)

    ADS  Google Scholar 

  41. Md A Khan and T K Das, Pramana — J. Phys. 56(1), 57 (2001)

    ADS  Google Scholar 

  42. T B De and T K Das, Phys. Rev. C36, 402 (1987)

    ADS  Google Scholar 

  43. V P Brito, H T Coelho and T K Das, Phys. Rev. A40, 3346 (1989)

    ADS  Google Scholar 

  44. A K Ghosh and T K Das, Phys. Rev. C42, 1249 (1990)

    ADS  Google Scholar 

  45. T K Das, H T Coelho and J R A Torreao, Phys. Rev. C45, 2640 (1992)

    ADS  Google Scholar 

  46. S Bhattacharya, T K Das, K P Kanta and A K Ghosh, Phys. Rev. C50, 2228 (1994)

    ADS  Google Scholar 

  47. M A Khan, S K Dutta, T K Das and M K Pal, J. Phys. G24, 1519 (1998)

    ADS  Google Scholar 

  48. Yu A Simonov, Yad. Fiz. 3, 630 (1960) [Sov. J. Nucl. Phys. 3, 461 (1960)]; in Proc. of the International Symposium on the Present Status and Novel Developments in the Nuclear Many Body Problem, Rome, 1972 edited by F Calogero and C Ciofi Degli Atti (Editrice composition, Bologna, 1973) p. 527; Sov. J. Nucl. Phys. 7, 722 (1968)

    MathSciNet  Google Scholar 

  49. F Zernike and H C Brinkman, Proc. Kon. Acad. Wtensch 33, 3 (1975)

    Google Scholar 

  50. M Fabre de la Ripelle, Proc. Int. Sch. Nucl. Theor. Phys. Predeal 1969

  51. M Fabre de la Ripelle, Comp. Reend. Acad. Sci. B269, 80 (1970); A273, 1007 (1971)

    Google Scholar 

  52. G Erens, J L Visschers and R Van Wageningen, Ann. Phys. 67, 461 (1971)

    Article  ADS  Google Scholar 

  53. J L Ballot, Z. Phys. A (Germany) 302, 347 (1981); Few-body system suppl. (Austria), 1, 146 (1986)

    ADS  Google Scholar 

  54. J L Ballot and M Fabre de la Ripelle, Ann. Phys. (NY) 127, 62 (1980)

    Article  ADS  Google Scholar 

  55. J M Richard, Phys. Rep. 212, 1 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  56. H Leeb, H Fiedeldey, E G O Gavin, S A Sofianos and R Lipperheide, Few body systems 12, 55 (1992)

    Article  ADS  Google Scholar 

  57. N Barnea and A Novoselsky, Ann. Phys. (NY) 256, 192 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. S Watanabe, Y Hosoda and D Kato, J. Phys. B26, L495 (1993)

  59. B R Johnson, J. Chem. Phys. 69, 4678 (1978)

    Article  ADS  Google Scholar 

  60. A K Ghosh and T K Das, Fizika 22(3) 521 (1990)

    Google Scholar 

  61. M Abramowitz and I A Stegun, Handbook of mathematical functions (Dover Publications, NY, 1972) (ninth printing) p. 774

  62. J Raynal and J Revai, Nuovo Cimento 68, 612 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  63. T K Das, H T Coelho and M Fabre de la Ripelle, Phys. Rev. C26, 2281 (1982)

    ADS  Google Scholar 

  64. D Gogny, P Pires and R de Tourreil, Phys. Rev. B32, 591 (1970)

    Google Scholar 

  65. S Sack, L C Biedenham and G Breit, Phys. Rev. 93, 321 (1954)

    Article  ADS  Google Scholar 

  66. S Ali, A A Z Ahmad and N Ferdous, Rev. Mod. Phys. 57, 923 (1985)

    Article  ADS  Google Scholar 

  67. J L Ballot, M Beiner and M Fabre De La Ripelle, Present status and novel developments in the nuclear many-body problems edited by F Calogero and C Ciofi degli Atti (Rome, 1972) p. 565

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, M.A., Das, T.K. Investigation of halo structure of 6He by hyperspherical three-body method. Pramana - J Phys 57, 701–716 (2001). https://doi.org/10.1007/s12043-001-0021-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0021-0

Keywords

PACS Nos

Navigation