Skip to main content
Log in

Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids)

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Nanofluids are a new class of heat transfer fluids developed by suspending nanosized solid particles in liquids. Larger thermal conductivity of solid particles compared to the base fluid such as water, ethylene glycol, engine oil etc. significantly enhances their thermal properties. Several phenomenological models have been proposed to explain the anomalous heat transfer enhancement in nanofluids. This paper presents a systematic literature survey to exploit the characteristics of nanofluids, viz., thermal conductivity, specific heat and other thermal properties. An empirical correlation for the thermal conductivity of Al2O3 + water and Cu + water nanofluids, considering the effects of temperature, volume fraction and size of the nanoparticle is developed and presented. A correlation for the evaluation of Nusselt number is also developed and presented and compared in graphical form. This enhanced thermophysical and heat transfer characteristics make fluids embedded with nanomaterials as excellent candidates for future applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S U S Choi, Development and applications of non-Newtonian flows edited by D A Singer and H P Wang (ASME, New York, 1995) vol. FED 231, pp. 99–105

    Google Scholar 

  2. J Buongiorno, ASME J. Heat Transfer 128, 240 (2006)

    Article  Google Scholar 

  3. A S Ahuja, J. Appl. Phys. 46(8), 855 (1975)

    Google Scholar 

  4. H Masuda, A Ebata, K Teramae and N Hishinuma, Netsu Bussei (Japan) 4, 227 (1993)

    Google Scholar 

  5. X Wang, X Xu and S U S Choi, J. Thermophys. Heat Transfer 13(4), 474 (1999)

    Article  Google Scholar 

  6. S K Das, N Putra, P Thiesen and W Roetzel, ASME J. Heat Transfer 125, 567 (2003)

    Article  Google Scholar 

  7. J A Eastman, S U S Choi, S Li and L J Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  8. P Keblinski, S R Phillpot, S U S Choi and J A Eastman, Int. J. Heat Mass Transfer 45, 855 (2002)

    Article  MATH  Google Scholar 

  9. S K Das, N Putra and W Roetzel, Int. J. Heat Mass Transfer 46, 851 (2003)

    Article  Google Scholar 

  10. N Putra, W Roetzel and S K Das, ASME J. Heat Mass Transfer 39, 775 (2003)

    Article  ADS  Google Scholar 

  11. Y Xuan and Q Li, ASME J. Heat Transfer 125, 151 (2003)

    Article  Google Scholar 

  12. B C Pak and Y I Cho, Expt. Heat Transfer 11, 151 (1998)

    Article  Google Scholar 

  13. H C Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  14. J C Maxwell, A treatise on electricity and magnetism, 2nd Ed. (Clarendon Press, Oxford, UK, 1881) vol. 1, p. 440

    Google Scholar 

  15. R L Hamilton and O K Crosser, Industrial and Engineering Chemistry Fundamentals 1(3), 187 (1962)

    Article  Google Scholar 

  16. S P Jang and S U S Choi, Appl. Phys. Lett. 84(21), 4316 (2004)

    Article  ADS  Google Scholar 

  17. D A G Bruggeman, Ann. Phys. Leipzig 430, 285 (1935)

    Google Scholar 

  18. J E Spanier and I P Herman, Phys. Rev. B61(15), 10437 (2000)

    ADS  Google Scholar 

  19. D J Jeffery, Proc. R. Soc. London A335, 355 (1973)

    ADS  Google Scholar 

  20. R H Davis, Int. J. Thermophys. 7, 6761 (1986)

    Article  Google Scholar 

  21. P Ravi, P Bhattacharya and P E Phelan, Phys. Rev. Lett. 94, 25901 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasu, V., Rama Krishna, K. & Kumar, A.C.S. Analytical prediction of forced convective heat transfer of fluids embedded with nanostructured materials (nanofluids). Pramana - J Phys 69, 411–421 (2007). https://doi.org/10.1007/s12043-007-0142-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-007-0142-1

Keywords

PACS Nos

Navigation