Skip to main content
Log in

Generalized N-coupled maps with invariant measure in Bose-Mesner algebra perspective

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

By choosing a dynamical system with d different couplings, one can rearrange a system based on the graph with a given vertex dependent on the dynamical system elements. The relation between the dynamical elements (coupling) is replaced by a relation between the vertexes. Based on the E 0 transverse projection operator, we addressed synchronization problem of an array of the linearly coupled map lattices of identical discrete time systems. The synchronization rate is determined by the second largest eigenvalue of the transition probability matrix. Algebraic properties of the Bose-Mesner algebra with an associated scheme with definite spectrum has been used in order to study the stability of the coupled map lattice. Associated schemes play a key role and may lead to analytical methods in studying the stability of the dynamical systems. The relation between the coupling parameters and the chaotic region is presented. It is shown that the feasible region is analytically determined by the number of couplings (i.e. by increasing the number of coupled maps, the feasible region is restricted). It is very easy to apply our criteria to the system being studied and they encompass a wide range of coupling schemes including most of the popularly used ones in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Kaneko, Phys. Lett. A111, 321 (1985)

    ADS  Google Scholar 

  2. Li Wentian, J. Statist. Phys. 68, 829 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. M G Cosenza and A Parravano, Phys. Rev. E64, 036224 (2001)

    Google Scholar 

  4. A M Dos Santos, R L Viana, S R Lopes, S E de S Pinto and A M Batista, Physica A367, 145 (2006)

    ADS  Google Scholar 

  5. S Monteb, F Dovidioc, H Chate and E Mosekildea, Physica D205, 25 (2005)

    ADS  Google Scholar 

  6. D Coca and S A Billings, Phys. Lett. A315, 61 (2003)

    ADS  MathSciNet  Google Scholar 

  7. G Rangarajan and M Ding, Phys. Lett. A296, 204 (2002)

    ADS  MathSciNet  Google Scholar 

  8. Y Chen et al, Phys. Rev. E67, 026209 (2003)

  9. R A Bailey, Association schemes: Designed experiments, algebra and combinatorics (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  10. C Godsil, Algebraic combinatorics (Chapman and Hall, New York, 1993)

    MATH  Google Scholar 

  11. C Godsil and G Royle, Algebraic graph theory (Springer, New York, 2001)

    MATH  Google Scholar 

  12. Prashant M Gade and Chin-Kun Hu, Phys. Rev. E73, 036212 (2006)

  13. A Shabunin and V Astakhov, Phys. Rev. E72, 016218 (2005)

    Google Scholar 

  14. L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. A Jafarizadeh, S Behnia, S Khorram and H Nagshara, J. Stat. Phys. 104(516), 1013 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. M A Jafarizadeh and S Behnia, J. Nonlinear Phys. 9, 26 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. M A Jafarizadeh and S Behnia, Phys. Lett. A310, 168 (2003)

    ADS  MathSciNet  Google Scholar 

  18. V M Gundlachi and D A Rand, Nonlinearity 6, 215 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  19. J R Dorfman, An introduction to chaos in nonequilibrium statistical mechanics (Cambridge University Press, Cambridge, 1999)

    MATH  Google Scholar 

  20. G Keller, Equilibrium states in ergodic theory (Cambridge University Press, Cambridge, 1998) p. 23

    MATH  Google Scholar 

  21. M Sonis and S Zhoub, Physica D165, 12 (2002)

    ADS  Google Scholar 

  22. P Y Tong and K W Yu, Phys. Lett. A280, 139 (2001)

    Google Scholar 

  23. S Boyd and L Vandenberghe, Convex optimization (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  24. M A Jafarizadeh, Physica A287, 1 (2000)

    ADS  MathSciNet  Google Scholar 

  25. L T Gruyitch and R Bouyekhf, Nonlinear Analysis 42, 487 (2000)

    Article  MathSciNet  Google Scholar 

  26. R E Amritkar, S Jalan and C Hu, Phys. Rev. E72, 016212 (2005)

  27. T Y Li and J A Yorke, Am. Math. Monthly 82, 481 (1975)

    Article  MathSciNet  Google Scholar 

  28. F R Marotto, J. Math. Anal. Appl. 63, 199 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  29. G De Barra, Measure theory and integration (John Wiley & Sons, New York, 1981)

    MATH  Google Scholar 

  30. Ming-Chung Ho, Yao-Chen Hung and I-Min Jiang, Phys. Lett. A324, 450 (2004)

    ADS  MathSciNet  Google Scholar 

  31. N Guptea, A Sharmaa and G R Pradhanb, Physica A318, 85 (2003)

    ADS  Google Scholar 

  32. S Morita, K Oshiob, Y Osanac, Y Funabashic, K Okac and K Kawamura, Physica A298, 553 (2001)

    ADS  Google Scholar 

  33. M A Jafarizadeh, Euro. Phys. J. B4, 103 (1998)

    ADS  Google Scholar 

  34. Fuzhen Zhang, Matrix theory. Basic results and techniques (Springer, New York, 1999)

    MATH  Google Scholar 

  35. M Jiang and Y B Pesin, Commun. Math. Phys. 193, 675 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Jafarizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarizadeh, M.A., Behnia, S., Faizi, E. et al. Generalized N-coupled maps with invariant measure in Bose-Mesner algebra perspective. Pramana - J Phys 70, 417–438 (2008). https://doi.org/10.1007/s12043-008-0059-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0059-3

Keywords

PACS Nos

Navigation