Skip to main content
Log in

Bulk viscous cosmology in early Universe

  • Research Articles
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The effect of bulk viscosity on the early evolution of Universe for a spatially homogeneous and isotropic Robertson-Walker model is considered. Einstein’s field equations are solved by using ‘gamma-law’ equation of state p = (γ − 1)ρ, where the adiabatic parameter gamma (γ) depends on the scale factor of the model. The ‘gamma’ function is defined in such a way that it describes a unified solution of early evolution of the Universe for inflationary and radiation-dominated phases. The fluid has only bulk viscous term and the coefficient of bulk viscosity is taken to be proportional to some power function of the energy density. The complete general solutions have been given through three cases. For flat space, power-law as well as exponential solutions are found. The problem of how the introduction of viscosity affects the appearance of singularity, is briefly discussed in particular solutions. The deceleration parameter has a freedom to vary with the scale factor of the model, which describes the accelerating expansion of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C Eckart, Phys. Rev. 58, 919 (1940)

    Article  MATH  ADS  Google Scholar 

  2. L D Landau and E M Lifshitz, Fluid mechanics (Butterworth Heinemann, New York, 1987)

    MATH  Google Scholar 

  3. W Israel, Ann. Phys. 100, 310 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. W Israel and J M Stewart, Phys. Lett. A58, 213 (1976)

    ADS  Google Scholar 

  5. S Weinberg, Gravitation and cosmology (Wiley, New York, 1972)

    Google Scholar 

  6. J D Nightingale, Astrophys. J. 185, 105 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  7. M Heller and Z Klimek, Astrophys. Space Sci. 33, L37 (1975)

    Google Scholar 

  8. M Heller, Z Klimek and L Suszyeki, Astrophys. Space Sci. 20, 205 (1973)

    Article  ADS  Google Scholar 

  9. G L Murphy, Phys. Rev. D8, 4231 (1973)

    ADS  Google Scholar 

  10. V A Belinskii and I M Khalatnikov, Sov. Phys. JETP 43, 205 (1976)

    ADS  Google Scholar 

  11. V A Belinskii and I M Khalatnikov, Sov. Phys. JETP 49, 401 (1975)

    Google Scholar 

  12. J D Barrow, Phys. Lett. B180, 335 (1986)

    MathSciNet  ADS  Google Scholar 

  13. J D Barrow, Nucl. Phys. B310, 743 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  14. N O Santos, R S Dias and A Banerjee, J. Math. Phys. 26, 876 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ø Grøn, Astrophys. Space Sci. 173, 191 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  16. D Pavo’n, J Bafaluy and D Jou, Class. Quantum Grav. 8, 347 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  17. D Pavo’n and W Zimdahl, Phys. Lett. A179, 261 (1993)

    ADS  Google Scholar 

  18. A Burd and A Coley, Class. Quant. Grav. 11, 83 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. R Maartens, Class. Quant. Grav. 12, 1455 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. W Zimdahl, Phys. Rev. D53, 5483 (1996)

    ADS  Google Scholar 

  21. W Zimdahl, Mon. Not. R. Astron. Soc. 280, 1239 (1996)

    ADS  Google Scholar 

  22. L P Chimento, A S Jakubi and D Pavon, Phys. Rev. D62, 063508 (2000)

  23. L P Chimento, A S Jakubi and D Pavon, Phys. Rev. D67, 087302 (2003)

  24. J C Fabris, S V B Goncalves and R S Ribeiro, Gen. Relativ. Gravit. 38, 495 (2006)

    Article  MATH  ADS  Google Scholar 

  25. M K Mak and T Harko, Int. J. Mod. Phys. D12, 925 (2003)

    MathSciNet  ADS  Google Scholar 

  26. A A Sen, S Sen and S Sethi, Phys. Rev. D63, 107501 (2001)

  27. M Cataldo, N Cruz and S Lepe, Phys. Lett. B619, 5 (2005)

    ADS  Google Scholar 

  28. N Carlevaro and G Mod. Montani, Phys. Lett. A20, 1729 (2005)

    Google Scholar 

  29. J C Carvalho, Int. J. Theor. Phys. 35, 2019 (1996)

    Article  MATH  Google Scholar 

  30. S Ram and C P Singh, Int. J. Theor. Phys. 37, 1141 (1998)

    Article  MATH  Google Scholar 

  31. S Ram and C P Singh, Astrophys. Space Sci. 254, 143 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. C P Singh, S Kumar and A Pradhan, Class. Quant. Grav. 24, 455 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. C P Singh, Nuovo Cimento B122, 89 (2007)

    ADS  Google Scholar 

  34. P C W Davies, Class. Quant. Grav. 4, L225 (1987)

    Article  ADS  Google Scholar 

  35. Z Klimek, Acta Cosmol. 10, 7 (1981)

    ADS  Google Scholar 

  36. S Hawking and R Penrose, Proc. R. Soc. London Ser. A314, 529 (1970)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, C.P. Bulk viscous cosmology in early Universe. Pramana - J Phys 71, 33–48 (2008). https://doi.org/10.1007/s12043-008-0139-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0139-4

Keywords

PACS Nos

Navigation