Skip to main content
Log in

U e (1)-covariant R ξ gauge for the two-Higgs doublet model

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A U e (1)-covariant R ξ gauge for the two-Higgs doublet model based on BRST (Becchi-Rouet-Stora-Tyutin) symmetry is introduced. This gauge allows one to remove a significant number of nonphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant theory satisfies QED-like Ward identities. The presence of four ghost interactions in these types of gauges and their connection with the BRST symmetry are stressed. The Feynman rules for those new vertices that arise in this gauge, as well as for those couplings already present in the linear R ξ gauge but that are modified by this gauge-fixing procedure, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G t’Hooft and M J G Veltman, Nucl. Phys. B50, 318 (1972)

    Article  MathSciNet  Google Scholar 

  2. K Fujikawa, B W Lee and A I Sanda, Phys. Rev. D6, 2923 (1972)

    ADS  Google Scholar 

  3. B W Lee and J Zinn-Justin, Phys. Rev. D5, 3121, 3137, 3155 (1972); D7, 1049 (1972)

    ADS  Google Scholar 

  4. C Becchi, A Rouet and A Stora, Commun. Math. Phys. 42, 127 (1975); Ann. Phys. (NY) 98, 287 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  5. I V Tyutin: Preprint FIAN (P N: Lebedev Physical Institute of the USSR Academy of Science), No. 39 (1975)

  6. K Fujikawa, Phys. Rev. D7, 393 (1973)

    ADS  Google Scholar 

  7. See for instance, U Cotti, J L Díaz-Cruz and J J Toscano, Phys. Rev. D62, 035009 (2000)

    ADS  Google Scholar 

  8. J Hernández-Sánchez, M A Pérez, G Tavares-Velasco and J J Toscano, Phys. Rev. D69, 095008 (2004) and references therein

    ADS  Google Scholar 

  9. J Montaño, F Ramírez-Zavaleta, G Tavares-Velascvo and J J Toscano, Phys. Rev. D72, 055023 (2005)

    ADS  Google Scholar 

  10. F Ramírez-Zavaleta, G Tavares-Velascvo and J J Toscano, Phys. Rev. D75, 075008 (2007)

    ADS  Google Scholar 

  11. F Pisano and V Pleitez, Phys. Rev. D46, 410 (1992)

    ADS  Google Scholar 

  12. P H Prampton, Phys. Rev. Lett. 69, 2889 (1992)

    Article  ADS  Google Scholar 

  13. G V Jikia, Nucl. Phys. B412, 57 (1994)

    Article  ADS  Google Scholar 

  14. M Bace and N D Hari Dass, Ann. Phys. (NY) 94, 349 (1975)

    Article  ADS  Google Scholar 

  15. M B Gavela, G Girardi, C Malleville and P Sorba, Nucl. Phys. B193, 257 (1981)

    Article  ADS  Google Scholar 

  16. N M Moyonko, J H Reid and A Sen, Phys. Lett. B136, 265 (1984)

    ADS  Google Scholar 

  17. N M Moyonko and J H Reid, Phys. Rev. D32, 962 (1985)

    ADS  Google Scholar 

  18. J M Hernández, M A Pérez, G Tavares-Velasco and J J Toscano, Phys. Rev. D60, 013004 (1999)

    ADS  Google Scholar 

  19. M Baillargen and F Boudjema, Phys. Lett. B317, 371 (1993)

    ADS  Google Scholar 

  20. U Cotti, J L Díaz-Cruz and J J Toscano, Phys. Lett. B404, 308 (1997)

    ADS  Google Scholar 

  21. G Bélanger and F Boudjema, Phys. Lett. B288, 210 (1992)

    ADS  Google Scholar 

  22. M J Herrero and E Ruiz-Morales, Phys. Lett. B296, 397 (1992)

    ADS  Google Scholar 

  23. P A M Dirac, Proc. Cambridge Philos. Soc. 30, 150 (1934)

    Article  Google Scholar 

  24. W Heinsenberg, Z. Phys. 90, 209 (1934)

    Article  ADS  Google Scholar 

  25. N Kemmer and V F Weisskopf, Nature (London) 137, 659 (1936)

    Article  MATH  ADS  Google Scholar 

  26. G Jikia and A Tkabladze, Phys. Lett. B323, 453 (1994)

    ADS  Google Scholar 

  27. G J Gounaris, P I Porfyriadis and F M Renard, Phys. Lett. B452, 76 (1999); Eur. Phys. J. C9, 673 (1999)

    ADS  Google Scholar 

  28. G Tavares-Velasco and J J Toscano, Phys. Lett. B472, 105 (2000); Eur. Phys. Lett. 53, 465 (2001)

    ADS  Google Scholar 

  29. T Binoth, E W N Glover, P Marquard and J J van der Bij, J. High Energy Phys. 0205, 060 (2002)

    Article  ADS  Google Scholar 

  30. G Jikia and A Tkabladze, Phys. Lett. B332, 441 (1994)

    ADS  Google Scholar 

  31. G J Gounaris, J Layssac, P I Porfyriadis and F M Renard, Eur. Phys. J. C10, 499 (1999)

    ADS  Google Scholar 

  32. Fang-Xiao Deng and Xian-Jian Zhou, Commun. Theor. Phys. 34, 259 (2000); Mod. Phys. Lett. A15, 2387 (2000)

    Google Scholar 

  33. See for instance, U Cotti, J L Díaz-Cruz and J J Toscano, Phys. Rev. D62, 035009 (2000)

    ADS  Google Scholar 

  34. J Hernández-Sánchez, M A Pérez, G Tavares-Velasco and J J Toscano, Phys. Rev. D69, 095008 (2004)

    ADS  Google Scholar 

  35. J L Díaz-Cruz, J Hernández-Sánchez and J J Toscano, Phys. Lett. B512, 339 (2001)

    ADS  Google Scholar 

  36. L D Faddev and V N Popov, Phys. Lett. B25, 29 (1967)

    ADS  Google Scholar 

  37. B S De Witt, Phys. Rev. 162, 1195 (1967)

    Article  ADS  Google Scholar 

  38. L D Faddeev, Theor. Mat. Fiz. 1, 3 (1969) [Theor. Math. Phys. 1, 1 (1970)]

    MathSciNet  Google Scholar 

  39. Invariance under the transformation \( \bar C^a \)\( \bar C^a \) + c a, with c a an arbitrary constant parameter

  40. H Min, T Lee and P Y Pac, Phys. Rev. D32, 440 (1985)

    ADS  Google Scholar 

  41. H Hata and I Niigata, Nucl. Phys. B389, 133 (1993)

    Article  ADS  Google Scholar 

  42. K-I Kondo, Phys. Rev. D58, 105019 (1998)

    ADS  Google Scholar 

  43. T Shinohara, T Imai and K-I Kondo, Int. J. Mod. Phys. A18, 5733 (2003)

    MathSciNet  ADS  Google Scholar 

  44. J G Méndez and J J Toscano, Rev. Mex. de Fís. 50, 346 (2004)

    Google Scholar 

  45. J F Gunion and H E Haber, Phys. Rev. D67, 075019 (2003)

    ADS  Google Scholar 

  46. S Kanemura and H-A Tohyama, Phys. Rev. D57, 2949 (1998)

    ADS  Google Scholar 

  47. S Kanemura, Phys. Rev. D61, 09501 (2000); Eur. Phys. J. C17, 473 (2000)

    Google Scholar 

  48. See N Nakanishi and I Ojima, Covariant operator formalism of gauge theories and quantum gravity, in: World Sci. Lect. Notes Phys. 27, 1 (1990) and references therein

    MathSciNet  Google Scholar 

  49. For a review see, J Gomis, J Paris and S Samuel, Phys. Rep. 259, 1 (1995) and references therein

    Article  ADS  Google Scholar 

  50. G Couture and John N Ng, Z. Phys. C32, 579 (1986)

    ADS  Google Scholar 

  51. A Méndez and A Pomarol, Phys. Lett. B279, 98 (1992)

    ADS  Google Scholar 

  52. K Cheung and O C W Kong, Phys. Rev. D68, 053003 (2003)

    ADS  Google Scholar 

  53. A Arhrib and G Moultaka, Nucl. Phys. B558, 3 (1999)

    Article  ADS  Google Scholar 

  54. M Malinsky and J Horejsi, Jiri. Eur. Phys. J. C34, 477 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Honorato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honorato, C.G., Toscano, J.J. U e (1)-covariant R ξ gauge for the two-Higgs doublet model. Pramana - J Phys 73, 1023–1039 (2009). https://doi.org/10.1007/s12043-009-0164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0164-y

Keywords

Navigation