Skip to main content
Log in

Nonlinear properties of a graded-index photonic heterostructure

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The optical properties of a one-dimensional (1D) photonic heterostructure with graded-index nonlinear materials are demonstrated theoretically. The influence of the gradation profile of the graded-index nonlinear layers on the linear and nonlinear responses of the structure are analysed. It is shown that the Q-factor of the defect mode and the threshold input intensity to achieve the optical bistability in the used photonic heterostructure depend on the gradation profile of the graded-index nonlinear layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M Bayindir, B Temelkuran and E Ozbay, Appl. Phys. Lett. 77, 3902 (2000)

    Article  ADS  Google Scholar 

  2. E D V Nagesh, G Santosh Babu, V Subramanian, V Sivasubramanian and V R K Murthy, Pramana – J. Phys. 65, 11150 (2005)

    Article  Google Scholar 

  3. V Subramanian, Pramana – J. Phys. 70, 739 (2008)

    Article  ADS  Google Scholar 

  4. H Rahimi, A Namdar, S Roshan Entezar and H Tajalli, Pramana – J. Phys. 74, 805 (2010)

    Article  ADS  Google Scholar 

  5. K Sakoda, Optical properties of photonic crystals (Springer-Verlag, Berlin, 2001)

    Book  Google Scholar 

  6. K Inoue and K Ohtaka, Photonic crystals: Physics fabrication and applications (Springer, Berlin, 2004)

    Google Scholar 

  7. M D Huang, S Y Park, Y P Lee and K W Kim, J. Korean Phys. Soc. 47, 964 (2005)

    Google Scholar 

  8. Y Kalra and R K Sinha, Pramana – J. Phys. 70, 153 (2008)

    Article  ADS  Google Scholar 

  9. Y Liu and Z Lu, Prog. Electromagn. Res. 111, 213 (2011)

    Article  Google Scholar 

  10. J Danckaert, K Fobelets, I Veretennicoff, G Vitrant and R Reinisch, Phys. Rev . B 44, 8214 (1991)

    Article  ADS  Google Scholar 

  11. S Roshan Entezar, Prog. Electromagn. Res. M, 14, 33 (2010)

    Article  Google Scholar 

  12. V M Agranovich, S A Kiselev and D L Mills, Phys. Rev . B 44, 10917 (1991)

    Article  ADS  Google Scholar 

  13. R Wang, J Dong and D Y Xing, Phys. Rev . E 55, 6301 (1997)

    Article  ADS  Google Scholar 

  14. E Lidorikis, K Busch, Q M Li, C T Chan and C M Soukoulis, Phys. Rev . B 56, 15090 (1997)

    Article  ADS  Google Scholar 

  15. H Inouyea and Y Kanemitsu, Appl. Phys. Lett. 82, 1155 (2003)

    Article  ADS  Google Scholar 

  16. J He and M Cada, Appl. Phys. Lett. 61, 2150 (1992)

    Article  ADS  Google Scholar 

  17. C Lixue, D Xiaoxu, D Weiqiang, C Liangcai and L Shutian, Opt. Commun. 209, 491 (2002)

    Article  ADS  Google Scholar 

  18. R Ozaki, T Matsui, M Ozaki and K Yoshino, Appl. Phys. Lett. 82, 3593 (2003)

    Article  ADS  Google Scholar 

  19. R Ozaki, Y Matsuhisa, M Ozaki and K Yoshino, Appl. Phys. Lett. 84, 1844 (2004)

    Article  ADS  Google Scholar 

  20. L Gao, J P Huang and K W Yu, Phys. Rev . B 69, 075105 (2004)

    Article  ADS  Google Scholar 

  21. J P Huang and K W Yu, Appl. Phys. Lett. 85, 94 (2004)

    Article  ADS  Google Scholar 

  22. J P Huang and K W Yu, Opt. Lett. 30, 275 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. H P Chiang, P T Leung and W S Tse, J. Phys. Chem. B 104, 2348 (2000)

    Article  Google Scholar 

  24. H T Jiang, H Chen, H Q Li, Y W Zhang and S Y Zhu, Appl. Phys. Lett. 83, 5386 (2003)

    Article  ADS  Google Scholar 

  25. M Kohmoto, B Sutherland and K Iguchi, Phys. Rev . Lett. 58, 2436 (1987)

    Article  ADS  Google Scholar 

  26. Z Wang, R W Peng, F Qiu, Z H Tang, X F Hu, X Q Huang et al, J. Crystal Growth 275, e1209 (2005)

    Article  ADS  Google Scholar 

  27. S M Wang and L Gao, Opt. Commun. 267, 197 (2006)

    Article  ADS  Google Scholar 

  28. C S Kee, J E Kim, H Y Park and H Lim, IEEE Trans. Microw. Theory Tech. 47, 2148 (1999)

    Article  ADS  Google Scholar 

  29. Z F Sang and Z Y Li, Opt. Commun. 259, 174 (2006)

    Article  ADS  Google Scholar 

  30. W Chen and D L Mills, Phys. Rev . Lett. 58, 160 (1987)

    Article  ADS  Google Scholar 

  31. W Chen and D L Mills, Phys. Rev . B 36, 6269 (1987)

    Article  ADS  Google Scholar 

  32. M Z Ali and T Abdullah, Phys. Lett. A 372, 1695 (2008)

    Article  ADS  Google Scholar 

  33. Y Maeda, Mater. Sci. Eng. B 81, 174 (2001)

    Article  Google Scholar 

  34. M Samoc, A Samoc, B Luther-Davies and M Woodruff, Pure Appl. Opt. 5, 681 (1996)

    Article  ADS  Google Scholar 

  35. S Ohke, T Umeda and Y Cho, Jpn. J. Appl. Phys. 37, L1312 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors are grateful for the financial support from Shabestar Branch of Islamic Azad University (Shabester, Iran) (Grant No. 51953900330002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S ROSHAN ENTEZAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MOGHADDAM, B.T., ENTEZAR, S.R. & ADL, H.P. Nonlinear properties of a graded-index photonic heterostructure. Pramana - J Phys 80, 887–894 (2013). https://doi.org/10.1007/s12043-013-0523-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0523-6

Keywords

PACS

Navigation