Skip to main content
Log in

Application of Tietz potential to study optical properties of spherical quantum dots

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we study the optical properties of spherical quantum dots by using Tietz potential. In this regard, we have applied Nikiforov–Uvarov (NU) technique and numerically solved the Schrödinger equation to obtain energy levels and wave functions. Then, by using the density matrix method, we have derived expressions for the changes in linear and third-order nonlinear absorption coefficients and refractive index. According to the results obtained from this work, it is deduced that: (i) the total refractive index and the absorption coefficients increase and shift towards higher energies as v 0 increases; (ii) the total absorption coefficient and refractive index decrease and also shift towards lower energies as r 0 increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G Schmid (ed.), Clusters and colloids, from theory to applications (VCH, New York, 1994)

  2. M A Kastner, Phys. Today 46, 24 (1993)

  3. R Khordad and B Mirhosseini, Physica B 408, 10 (2013)

  4. D Bimberg, M Grundman and N Ledentsov, Quantum dot heterostructures (Wiley, New York, 1999)

  5. N Miura, Physics of semiconductors in high magnetic fields (Oxford University Press, New York, 2008)

  6. H M Gibbs, Optical bistability: Controlling light with light (Academic Press, Orlando, NY, 1985)

  7. R Khordad, J. Lumin. 134, 201 (2013)

  8. S Hosseynizadeh Khezri, A Yazdani and R Khordad, Eur. Phys. J. Appl. Phys. 59, 30401 (2012)

  9. R Khordad and H Bahramiyan, Int. J. Mod. Phys. C 24, 1350041 (2013)

  10. D A Neamen, Semiconductor physics and devices 3rd edn (McGraw-Hill, 2003)

  11. S D Liang, C Y Chen, S C Jiang and D L Lin, Phys. Rev. B 53, 15459 (1996)

  12. U Bockelmann and G Bastard, Phys. Rev. B 42, 8947 (1990)

  13. V M Fomin, V N Gladilin, S N Klimin, J T Devreese, P M Koenraad and J H Wolter, Phys. Rev. B 61, R2436 (2000)

  14. R Heitz, I Mukhametzhanov, O Stier, A Madhukar and D Bimberg, Phys. Rev. Lett. 83, 4654 (1999)

  15. K-X Guo and C-Y Chen, Tr. J. Phys. 21, 1261 (1997)

  16. R Khordad, Superlatt. Microstruct. 54, 7 (2013)

  17. W Dieter Heiss, Quantum dots (A doorway to nanoscale physics) (Springer, 2005)

  18. G Wang and Q Guo, Physica B 403, 37 (2008)

  19. R Khordad, Opt. Quant. Electron. 46, 283 (2014)

  20. S Shao, K X Guo, Z H Zhang, N Li and C Peng, Superlatt. Microstruct. 48, 541 (2010)

  21. A L Morales, N Raigoza and C A Duque, Braz. J. Phys. 36, 862 (2006)

  22. I Karabulut and S Baskoutas, J. Comput. Theoret. Nanosci. 6, 153 (2009)

  23. R Khordad, S Kheiryzadeh Khaneghah and M Masoumi, Superlatt. Microstruct. 47, 538 (2010)

  24. R Khordad and B Mirhosseini, Opt. Commun. 285, 1233 (2012)

  25. H Nikoofard, E Maghsoodi, S Zarrinkamar, M Farhadi and H Hassanabadi, Turk. J. Phys. 37, 74 (2013)

  26. P M Morse, Phys. Rev. 34, 57 (1929)

  27. N Rosen and P M Morse, Phys. Rev. 42, 210 (1932)

  28. H Wei, Phys. Rev. A 42, 2524 (1990)

  29. T Tietz, J. Chem. Phys. 35, 1917 (1961)

  30. A A Zavitsas, J. Am. Chem. Soc. 113, 4755 (1991)

  31. P G Hajigeorgious and R J Le Roy, J. Chem. Phys. 112, 3949 (2000)

  32. Y Huang and R J Le Roy, J. Chem. Phys. 119, 7398 (2003)

  33. H M Tang, G C Liang, L H Zhang, F Zhao and C S Jia, Can. J. Chem. 92, 201 (2014)

  34. R T Pack, J. Chem. Phys. 57, 4612 (1972)

  35. G C Liang, H M Tang and C S Jia, Comput. Theor. Chem. 1020, 170 (2013)

  36. R Khordad and B Mirhosseini, Commun. Theor. Phys. 62, 77 (2014)

  37. Y Sun, S He and C S Jia, Phys. Scr. 87, 025301 (2013)

  38. C S Jia, T Chen, L Z Yi and S R Lin, J. Math. Chem. 51, 2165 (2013)

  39. X T Hu, J Y Liu and C S Jia, Comput. Theor. Chem. 1019, 137 (2013)

  40. H Hassanabadi, E Maghsoodi and S Zarrinkamar, Eur. Phys. J. Plus 127, 31 (2012)

  41. W C Qiang and S H Dong, Phys. Lett. A 368, 13 (2007)

  42. H Hassanabadi, E Maghsoodi, S Zarrinkamar and H Rahimov, J. Math. Phys. 53, 022104 (2012)

  43. M G Miranda, G H Sun and S H Dong, Int. J. Mod. Phys. E 19, 123 (2010)

  44. M C Zhang, G H Sun and S H Dong, Phys. Lett. A 374, 704 (2010)

  45. G H Sun and S H Dong, Mod. Phys. Lett. A 25, 2849 (2010)

  46. F Nikiforov and V B Uvarov, Special functions of mathematical physics (Birkhauser, Basel, 1988)

  47. A Berkdemir and J H Berkdemir, Chem. Phys. Lett. 417, 326 (2006)

  48. E Rosencher and P Bois, Phys. Rev. B 44, 11315 (1991)

  49. T Takagahara, Phys. Rev. B 36, 9293 (1987)

  50. G H Wang, Q Guo and K X Guo, Chin. J. Phys. 41, 296 (2003)

  51. S Ünlü, I Karabulut and H Safak, Physica E 33, 319 (2006)

  52. D Ahn and S L Chuang, IEEE J. Quant. Electron. 23, 2196 (1987)

  53. J Kim and S L Chuang, IEEE J. Quant. Electron. 42, 942 (2006)

  54. I Moreels, P Kockaert, D V Thourhout and Z Hens, Proceedings Symposium IEEE /LEOS Benelux Chapter (Brussels, 2007)

  55. J Chen, X Chen, R Xu, Y Zhu, Y Shi and X Zhu, Solid State Commun. 281, 3578 (2008)

  56. Y Takahashi, Y Hayamizu, H Itoh, M Yoshita, H Akiyama, L N Pfeiffer and K W West, arXiv: 0502363 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R KHORDAD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KHORDAD, R., MIRHOSSEINI, B. Application of Tietz potential to study optical properties of spherical quantum dots. Pramana - J Phys 85, 723–737 (2015). https://doi.org/10.1007/s12043-014-0906-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-014-0906-3

Keywords

PACS Nos

Navigation