Skip to main content
Log in

Theoretical investigation of chemically reactive flow of water-based carbon nanotubes (single-walled and multiple walled) with melting heat transfer

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This study reports the chemically reacting flow of carbon nanotubes (CNTs) over a stretchable curved sheet. The flow is initialised due to a stretched surface. A heat source is present. Water is considered as the base liquid. The vital interest of this work is that heat phenomenon is studied via melting heat transfer. Xue relation of nanoliquid is implemented to explain the properties of both single- and multiwall CNTs. Mathematical systems (partial differential equations) for the flow field are obtained. Appropriate transformations are utilised in order to transform partial differential systems into nonlinear ordinary differential systems. Further, these systems are solved numerically. Variations in flow, temperature, concentration, skin friction coefficient and Nusselt number via the involved influential variables are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S U S Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Development and application of non-Newtonian flows edited by D A Siginer and H P Wang (ASME, New York, 1995), FED-Vol. 231\(/\)MD 66, pp. 99–105

  2. M M Elias, M Miqdad, I M Mahbubul, R Saidur, M Kamalisarvestani, M R Sohel, A Hepbasli, N A Rahim and M A Amalina, Int. Commun. Heat Mass Transfer 44, 93 (2013)

    Article  Google Scholar 

  3. M F L D Volder, S H Tawfick, R H Baughman and A J Hart, Science 339, 535 (2013)

    Article  ADS  Google Scholar 

  4. T Hayat, K Muhammad, M Farooq and A Alsaedi, PLOS One 11, 0152923 (2016)

    Google Scholar 

  5. M Turkyilmazoglu, Eur. J. Mech. B \(/\) Fluids 53, 272 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. S Qayyum, T Hayat, A Alsaedi and B Ahmad, Int. J. Mech. Sci. 134, 306 (2017)

    Article  Google Scholar 

  7. T Hayat, M I Khan, M Waqas, A Alsaedi and M Farooq, Comput. Method Appl. Mech. Eng. 315, 1011 (2017)

    Article  Google Scholar 

  8. M Shiekholeslami and R Ellahi, Int. J. Heat Mass Transfer 89, 799 (2015)

    Article  Google Scholar 

  9. T Hayat, M I Khan, M Farooq, A Alsaedi and T Yasmeen, Int. J. Heat Mass Transfer 106, 810 (2017)

    Article  Google Scholar 

  10. S Qayyum, M I Khan, T Hayat and A Alsaedi, Results Phys. 7, 1907 (2017)

    Article  ADS  Google Scholar 

  11. S Soltani, A Kasaeian, H Sarrafha and D Wen, Sol. Energy 155, 1033 (2017)

    Article  ADS  Google Scholar 

  12. T Hayat, M I Khan, S Qayyum and A Alsaedi, Colloid. Surf. A Physicochem. Eng. Aspect. 539, 335 (2018)

    Article  Google Scholar 

  13. L J Crane, Z. Angew. Math. Phys. 21, 645 (1970)

    Google Scholar 

  14. T Hayat, M I Khan, M Farooq, A Alsaedi, M Waqas and T Yasmeen, Int. J. Heat Mass Transfer 99, 702 (2016)

    Article  Google Scholar 

  15. M Shiekholeslami, R Ellahi, H R Ashorynejad, G Domairry and T Hayat, J. Comput. Theor. Nanosci. 11, 486 (2014)

    Article  Google Scholar 

  16. T Hayat, K Muhammad, M Farooq and A Alsaedi, J. Mol. Liq. 220, 216 (2016)

    Article  Google Scholar 

  17. M I Khan, M Waqas, T Hayat and A Alsaedi, J. Colloid Interface Sci. 498, 85 (2017)

    Article  ADS  Google Scholar 

  18. M Sajid, N Ali, T Javed and Z Abbas, Chin. Phys. Lett. 27, 024703 (2010)

    Article  ADS  Google Scholar 

  19. T Hayat, T Nasir, M I Khan and A Alsaedi, Results Phys. 8, 1017 (2018)

    Article  ADS  Google Scholar 

  20. M Imtiaz, T Hayat and A Alsaedi, Powder Technol. 310, 154 (2017)

    Article  Google Scholar 

  21. M Naveed, Z Abbas and M Sajid, Eng. Sci. Technol. Int. J. 19, 841 (2016)

    Article  Google Scholar 

  22. M I Khan, T Hayat, M I Khan and A Alsaedi, Int. Commun. Heat Mass Transfer 91, 216 (2018)

    Article  Google Scholar 

  23. N F Okechi, M Jalila and S Asghar, Results Phys. 7, 2851 (2017)

    Article  ADS  Google Scholar 

  24. J H Merkin, Math. Comput. Model. 24, 125 (1996)

    Article  MathSciNet  Google Scholar 

  25. M I Khan, T Hayat and A Alsaedi, Results Phys. 7, 2644 (2017)

    Article  ADS  Google Scholar 

  26. T Hayat, M I Khan, M Farooq, T Yasmeen and A Alsaedi, J. Mol. Liq. 220, 49 (2016)

    Article  Google Scholar 

  27. S Qayyum, T Hayat and A Alsaedi, Results Phys. 7, 2752 (2017)

    Article  ADS  Google Scholar 

  28. M I Khan, M I Khan, M Waqas, T Hayat and A Alsaedi, Int. Commun. Heat Mass Transfer 86, 231 (2017)

    Article  Google Scholar 

  29. M I Khan, T Yasmeen, M I Khau, M Farooq and M Wakeel, Renew. Sust. Energ. Rev. 66, 702 (2016)

    Article  Google Scholar 

  30. N B Khan, Z Ibrahim, M I Khan, T Hayat and M F Javed, Int. J. Heat Mass Transfer 121, 309 (2018)

    Article  Google Scholar 

  31. T Hayat, S Qayyum, M I Khan and A Alsaedi, Chin. J. Phys. 55, 2501 (2017)

    Article  Google Scholar 

  32. M Turkyilmazoglu, Int. J. Heat Mass Transfer 126, 974 (2018)

    Article  Google Scholar 

  33. T Hayat, M I Khan, S Qayyum, A Alsaedi and M I Khan, Phys. Lett. A 382, 749 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. M Turkyilmazoglu, Phys. Fluids 29, 013302 (2017)

    Article  ADS  Google Scholar 

  35. M I Khan, T Hayat, M Waqas, M I Khan and A Alsaedi, J. Mol. Liq. 256, 108 (2018)

    Article  Google Scholar 

  36. M Turkyilmazoglu, Energy Convers. Manag. 114, 1 (2016)

    Article  Google Scholar 

  37. T Hayat, M I Khan, M Waqas and A Alsaedi, Results Phys. 7, 2711 (2017)

    Article  ADS  Google Scholar 

  38. M Turkyilmazoglu, Eur. J. Mech. B \(/\) Fluids 65, 184 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. M I Khan, M Waqas, T Hayat, A Alsaedi and M I Khan, Eur. Phys. J. Plus 132, 489 (2017)

    Article  Google Scholar 

  40. W A Khan, A S Alshomrani, A K Alzahrani, M Khan and M Irfan, Pramana – J. Phys. 91: 63 (2018)

  41. M I Khan, S Sumaira, T Hayat, M Waqas, M I Khan and A Alsaedi, J. Mol. Liq. 259, 274 (2018)

    Article  Google Scholar 

  42. E Azhar, Z Iqbal, S Ijaz and E N Maraj, Pramana – J. Phys. 91: 61 (2018)

    Article  ADS  Google Scholar 

  43. T Hayat, M W A Khan, A Alsaedi, M Ayub and M I Khan, Results Phys. 7, 2470 (2017)

    Article  ADS  Google Scholar 

  44. M F Javed, M I Khan, N B Khan, R Muhammad, M U Rehman, S W Khan and T A Khan, Results Phys. 9, 1250 (2018)

    Article  ADS  Google Scholar 

  45. M Kumar, G J Reddy and N Dalir, Pramana – J. Phys. 91: 60 (2018)

    Article  ADS  Google Scholar 

  46. M I Khan, T Hayat and A Alsaedi, Phys. Fluids 30, 023601 (2018)

    Article  ADS  Google Scholar 

  47. S Iram, M Nawaz and A Ali, Pramana – J. Phys. 91: 47 (2018)

    Article  ADS  Google Scholar 

  48. M I Khan, T Hayat, M I Khan and A Alsaedi, Int. J. Heat Mass Transfer 113, 310 (2017)

    Article  Google Scholar 

  49. Q Xue, Physica B 368, 302 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ijaz Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Muhammad, K., Khan, M.I. et al. Theoretical investigation of chemically reactive flow of water-based carbon nanotubes (single-walled and multiple walled) with melting heat transfer. Pramana - J Phys 92, 57 (2019). https://doi.org/10.1007/s12043-019-1722-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1722-6

Keywords

PACS Nos

Navigation